1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//! The module provides utilities to perform tests and performance evaluations
//! of different data structures.
//!
//! In particular, it provides functions to generate random increasing sequences and
//! random queries, to measure rank and select queries, and so on.

use crate::AccessUnsigned;
use num_traits::Unsigned;
use rand::Rng;
use serde::{Deserialize, Serialize};
use std::fs;
use std::path::Path;
use std::time::Instant;

/// Returns the type name of its argument.
pub fn type_of<T>(_: &T) -> &'static str {
    std::any::type_name::<T>()
}

/// Generates a random sequence of length `n` over the alphabet [0, `sigma`].
pub fn gen_sequence(n: usize, sigma: usize) -> Vec<u8> {
    assert!(sigma <= 256);
    let mut rng = rand::thread_rng();
    (0..n).map(|_| rng.gen_range(0..sigma) as u8).collect()
}

/// Generates a random vector of `n_queries` values in [0, `range_size`].
/// This can be used to generate random queries.
pub fn gen_queries(n_queries: usize, range_size: usize) -> Vec<usize> {
    let mut rng = rand::thread_rng();
    (0..n_queries)
        .map(|_| rng.gen_range(0..range_size))
        .collect()
}

/// Generates a random vector of `n_queries` for `rank` queries on a given sequence `s`.
/// Each query is a pair: a random position in [0, `s.len()`) and the symbol `s[pos]`, where `pos` is another random position in [0, `s.len()`).
pub fn gen_rank_queries<T: Clone>(n_queries: usize, s: &[T]) -> Vec<(usize, T)> {
    let mut rng = rand::thread_rng();
    (0..n_queries)
        .map(|_| {
            (
                rng.gen_range(0..s.len()),
                s[rng.gen_range(0..s.len())].clone(),
            )
        })
        .collect()
}

/// Generate a random vector of `n_queries` for `select` queries on a given sequence `s`.
/// A query is generated by selecting a symbol c at random from the text and, then,
/// by selecting a random value in `[1, occs[c]]`, where `occs[c]` is the number of occurrences of `c`.
pub fn gen_select_queries<T: Unsigned + Into<usize> + Copy>(
    n_queries: usize,
    s: &[T],
) -> Vec<(usize, T)> {
    let mut rng = rand::thread_rng();

    let mut occs = [0_usize; 256];
    for &c in s.iter() {
        occs[c.into()] += 1;
    }

    (0..n_queries)
        .map(|_| {
            let c = s[rng.gen_range(0..s.len())];
            let occ = occs[c.into()];
            let p = rng.gen_range(1..=occ);
            (p, c)
        })
        .collect()
}

/// Generates a random vector of `n_queries`.
/// Each query is a pair: a value in [0, `range_size`] and a symbol in [0, `sigma`].
/// This can be used to generate random queries for rank over a general
/// alphabet of size `sigma`.
pub fn gen_queries_pairs(n_queries: usize, range_size: usize, sigma: usize) -> Vec<(usize, usize)> {
    let mut rng = rand::thread_rng();
    (0..n_queries)
        .map(|_| (rng.gen_range(0..range_size), rng.gen_range(0..sigma)))
        .collect()
}

/// Generates a random strictly increasing sequence of `n` values up to `u`.
pub fn gen_strictly_increasing_sequence(n: usize, u: usize) -> Vec<usize> {
    let mut rng = rand::thread_rng();
    let mut v: Vec<usize> = (0..n).map(|_x| rng.gen_range(0..(u - n))).collect();
    v.sort_unstable();
    for (i, value) in v.iter_mut().enumerate() {
        // remove duplicates to make a strictly increasing sequence
        *value += i;
    }
    v
}

/*
/// Tests rank1 op by querying every position of a bit set to 1 in the binary vector
/// and the next position.
pub fn test_rank1<T>(ds: &T, bv: &BitVector)
where
    T: Rank,
{
    for (rank, pos) in bv.ones().enumerate() {
        let result = ds.rank1(pos);
        assert_eq!(result, Some(rank));
        let result = ds.rank1(pos + 1);
        dbg!(pos + 1, rank);
        assert_eq!(result, Some(rank + 1));
    }
    let result = ds.rank1(bv.len() + 1);
    assert_eq!(result, None);
}

/// Tests select1 op by querying every position of vector.
pub fn test_select1<T>(ds: &T, data: &[usize])
where
    T: Select,
{
    for (i, &v) in data.iter().enumerate() {
        let result = ds.select1(i);
        dbg!(i, v);
        assert_eq!(result, Some(v));
    }
}
*/

pub struct TimingQueries {
    timings: Vec<u128>,
    time: Instant,
    n_queries: usize,
}

impl TimingQueries {
    pub fn new(n_runs: usize, n_queries: usize) -> Self {
        Self {
            timings: Vec::with_capacity(n_runs),
            time: Instant::now(),
            n_queries,
        }
    }

    #[inline(always)]
    pub fn start(&mut self) {
        self.time = Instant::now();
    }

    #[inline(always)]
    pub fn stop(&mut self) {
        self.timings.push(self.time.elapsed().as_nanos());
    }

    /// Returns minimum, maximum, average query time per query in nanosecs.
    pub fn get(&self) -> (u128, u128, u128) {
        let min = *self.timings.iter().min().unwrap() / (self.n_queries as u128);
        let max = *self.timings.iter().max().unwrap() / (self.n_queries as u128);
        let avg =
            self.timings.iter().sum::<u128>() / ((self.timings.len() * self.n_queries) as u128);
        (min, max, avg)
    }
}

/// Given a strictly increasing vector v, it returns a vector with all
/// the values not in v.
pub fn negate_vector(v: &[usize]) -> Vec<usize> {
    let max = *v.last().unwrap();
    let mut vv = Vec::with_capacity(max - v.len() + 1);
    let mut j = 0;
    for i in 0..max {
        if i == v[j] {
            j += 1;
        } else {
            vv.push(i);
        }
    }
    assert_eq!(max - v.len() + 1, vv.len());
    vv
}

pub fn load_or_build_and_save_qwt<DS>(
    output_filename: &str,
    text: &[<DS as AccessUnsigned>::Item],
) -> DS
where
    DS: Serialize
        + for<'a> Deserialize<'a>
        + From<Vec<<DS as AccessUnsigned>::Item>>
        + AccessUnsigned,
    <DS as AccessUnsigned>::Item: Clone,
{
    let ds: DS;
    let path = Path::new(&output_filename);
    if path.exists() {
        println!(
            "The data structure already exists. Filename: {}. I'm going to load it ...",
            output_filename
        );
        let serialized = fs::read(path).unwrap();
        println!("Serialized size: {:?} bytes", serialized.len());
        ds = bincode::deserialize::<DS>(&serialized).unwrap();
    } else {
        let mut t = TimingQueries::new(1, 1); // measure building time
        t.start();
        ds = DS::from(text.to_owned());
        t.stop();
        let (t_min, _, _) = t.get();
        println!("Construction time {:?} millisecs", t_min / 1000000);

        let serialized = bincode::serialize(&ds).unwrap();
        println!("Serialized size: {:?} bytes", serialized.len());
        fs::write(path, serialized).unwrap();
    }

    ds
}

pub fn build_qwt<DS>(text: &[<DS as AccessUnsigned>::Item]) -> DS
where
    DS: Serialize
        + for<'a> Deserialize<'a>
        + From<Vec<<DS as AccessUnsigned>::Item>>
        + AccessUnsigned,
    <DS as AccessUnsigned>::Item: Clone,
{
    let mut t = TimingQueries::new(1, 1); // measure building time
    t.start();
    let ds = DS::from(text.to_owned());
    t.stop();
    let (t_min, _, _) = t.get();
    println!("Construction time {:?} millisecs", t_min / 1000000);

    ds
}