1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
use crate::geom::about_equal;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::{
    cmp::{Eq, PartialEq},
    fmt,
    iter::Sum,
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Default, Debug)]
///A 2D vector with an arbitrary numeric type
pub struct Vector {
    ///The x coordinate of the vector
    pub x: f32,
    ///The y coordinate of the vector
    pub y: f32,
}

impl Vector {
    /// A vector with x = 0.0, y = 0
    pub const ZERO: Vector = Vector { x: 0f32, y: 0f32 };
    /// A vector with x = 1, y = 0
    pub const X: Vector = Vector { x: 1f32, y: 0f32 };
    /// A vector with x = 0, y = 1
    pub const Y: Vector = Vector { x: 0f32, y: 1f32 };
    /// A vector with x = 1, y = 1
    pub const ONE: Vector = Vector { x: 1f32, y: 1f32 };
}

#[allow(clippy::len_without_is_empty)]
impl Vector {
    ///Create a new vector
    pub fn new(x: f32, y: f32) -> Vector {
        Vector { x, y }
    }

    ///Create a unit vector at a given angle
    pub fn from_angle(angle: f32) -> Vector {
        Vector::new(angle.to_radians().cos(), angle.to_radians().sin())
    }

    ///Get the squared length of the vector (faster than getting the length)
    pub fn len2(self) -> f32 {
        self.x * self.x + self.y * self.y
    }

    ///Get the length of the vector
    pub fn len(self) -> f32 {
        self.len2().sqrt()
    }

    ///Clamp a vector somewhere between a minimum and a maximum
    #[must_use]
    pub fn clamp(self, min_bound: Vector, max_bound: Vector) -> Vector {
        Vector::new(
            max_bound.x.min(min_bound.x.max(self.x)),
            max_bound.y.min(min_bound.y.max(self.y)),
        )
    }

    ///Get the cross product of a vector
    pub fn cross(self, other: Vector) -> f32 {
        self.x * other.y - self.y * other.x
    }

    ///Get the dot product of a vector
    pub fn dot(self, other: Vector) -> f32 {
        self.x * other.x + self.y * other.y
    }

    ///Normalize the vector's length from [0, 1]
    #[must_use]
    pub fn normalize(self) -> Vector {
        self / self.len()
    }

    ///Get only the X component of the Vector, represented as a vector
    #[must_use]
    pub fn x_comp(self) -> Vector {
        Vector::new(self.x, 0f32)
    }

    ///Get only the Y component of the Vector, represented as a vector
    #[must_use]
    pub fn y_comp(self) -> Vector {
        Vector::new(0f32, self.y)
    }

    ///Get the vector equal to Vector(1 / x, 1 / y)
    #[must_use]
    pub fn recip(self) -> Vector {
        Vector::new(self.x.recip(), self.y.recip())
    }

    ///Multiply the components in the matching places
    #[must_use]
    pub fn times(self, other: Vector) -> Vector {
        Vector::new(self.x * other.x, self.y * other.y)
    }

    ///Get the angle a vector forms with the positive x-axis, counter clockwise
    pub fn angle(self) -> f32 {
        self.y.atan2(self.x).to_degrees()
    }

    ///Create a vector with the same angle and the given length
    #[must_use]
    pub fn with_len(self, length: f32) -> Vector {
        self.normalize() * length
    }

    ///Get the Euclidean distance to another vector
    pub fn distance(self, other: Vector) -> f32 {
        ((other.x - self.x).powi(2) + (other.y - self.y).powi(2)).sqrt()
    }

    ///Get a vector with the minimum of each component of this and another vector
    pub fn min(self, other: Vector) -> Vector {
        Vector::new(self.x.min(other.x), self.y.min(other.y))
    }

    ///Get a vector with the maximum of each component of this and another vector
    pub fn max(self, other: Vector) -> Vector {
        Vector::new(self.x.max(other.x), self.y.max(other.y))
    }
}

impl Neg for Vector {
    type Output = Vector;

    fn neg(self) -> Vector {
        Vector::new(-self.x, -self.y)
    }
}

impl Add for Vector {
    type Output = Vector;

    fn add(self, rhs: Vector) -> Vector {
        Vector::new(self.x + rhs.x, self.y + rhs.y)
    }
}

impl AddAssign for Vector {
    fn add_assign(&mut self, rhs: Vector) {
        *self = *self + rhs;
    }
}

impl Sub for Vector {
    type Output = Vector;

    fn sub(self, rhs: Vector) -> Vector {
        self + (-rhs)
    }
}

impl SubAssign for Vector {
    fn sub_assign(&mut self, rhs: Vector) {
        *self = *self - rhs;
    }
}

impl Div<f32> for Vector {
    type Output = Vector;

    fn div(self, rhs: f32) -> Vector {
        Vector::new(self.x / rhs, self.y / rhs)
    }
}

impl DivAssign<f32> for Vector {
    fn div_assign(&mut self, rhs: f32) {
        *self = *self / rhs;
    }
}

impl Mul<f32> for Vector {
    type Output = Vector;

    fn mul(self, rhs: f32) -> Vector {
        Vector::new(self.x * rhs, self.y * rhs)
    }
}

impl MulAssign<f32> for Vector {
    fn mul_assign(&mut self, rhs: f32) {
        *self = *self * rhs;
    }
}

impl Sum for Vector {
    fn sum<I>(iter: I) -> Vector
    where
        I: Iterator<Item = Vector>,
    {
        iter.fold(Vector::ZERO, |a, b| a + b)
    }
}

impl PartialEq for Vector {
    fn eq(&self, other: &Vector) -> bool {
        about_equal(self.x, other.x) && about_equal(self.y, other.y)
    }
}

impl Eq for Vector {}

impl fmt::Display for Vector {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "<{}, {}>", self.x, self.y)
    }
}

impl From<mint::Vector2<f32>> for Vector {
    fn from(other: mint::Vector2<f32>) -> Vector {
        Vector::new(other.x, other.y)
    }
}

impl From<Vector> for mint::Vector2<f32> {
    fn from(vec: Vector) -> mint::Vector2<f32> {
        mint::Vector2 { x: vec.x, y: vec.y }
    }
}

impl From<(f32, f32)> for Vector {
    fn from(other: (f32, f32)) -> Vector {
        Vector::new(other.0, other.1)
    }
}

#[cfg(test)]
mod tests {
    use crate::geom::*;

    #[test]
    fn arithmetic() {
        let a = Vector::new(5.0, 10.0);
        let b = Vector::new(1.0, -2.0);
        assert!((a + b).x == 6f32);
        assert!((a - b).y == 12f32);
    }

    #[test]
    fn equality() {
        assert_eq!(Vector::new(5.0, 5.0), Vector::new(5.0, 5.0));
        assert_ne!(Vector::new(0.0, 5.0), Vector::new(5.0, 5.0));
    }

    #[test]
    fn inverse() {
        let vec = Vector::new(3.0, 5.0);
        let inverse = vec.recip();
        assert_eq!(Vector::new(1.0 / 3.0, 1.0 / 5.0), inverse);
    }

    #[test]
    fn length() {
        let vec = Vector::X * 5.0;
        assert!(about_equal(vec.len2(), 25f32));
        assert!(about_equal(vec.len(), 5f32));
    }

    #[test]
    fn scale() {
        let vec = Vector::new(1.0, 1.0);
        let doubled = Vector::new(2.0, 2.0);
        assert_eq!(vec * 2.0, doubled);
        let halved = Vector::new(0.5, 0.5);
        assert_eq!(vec / 2.0, halved);
    }

    #[test]
    fn clamp() {
        let min = Vector::new(-10.0, -2.0);
        let max = Vector::new(5.0, 6.0);
        let vec = Vector::new(-11.0, 3.0);
        let clamped = vec.clamp(min, max);
        let expected = Vector::new(-10.0, 3.0);
        assert_eq!(clamped, expected);
    }

    #[test]
    fn dot() {
        assert!(about_equal(
            Vector::new(6.0, 5.0).dot(Vector::new(2.0, -8.0)),
            -28f32
        ));
    }

    #[test]
    fn times() {
        let vec = Vector::new(3.0, -2.0);
        let two = Vector::ONE * 2.0;
        assert_eq!(vec.times(two), vec * 2.0);
    }

    #[test]
    fn angle() {
        let a = Vector::X;
        let b = Vector::Y;
        let c = a + b;
        assert_eq!(a.angle(), 0.0);
        assert_eq!(b.angle(), 90.0);
        assert_eq!(c.angle(), 45.0);
    }

    #[test]
    fn distance() {
        let a = Vector::X;
        let b = Vector::Y;
        let c = a + b;
        assert_eq!(a.distance(a), 0.0);
        assert_eq!(a.distance(Vector::ZERO), 1.0);
        assert_eq!(b.distance(a), 2_f32.sqrt());
        assert_eq!(c.distance(Vector::ZERO), 2_f32.sqrt());
    }

    #[test]
    fn sum() {
        let input = vec![
            Vector::new(1.0, 2.0),
            Vector::new(2.0, 3.0),
            Vector::new(3.0, 4.0),
        ];
        let sum = input.into_iter().sum();
        assert_eq!(Vector::new(6.0, 9.0), sum);
    }
}