1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
use std::marker::PhantomData;
use std::iter::FromIterator;

use rand;
use num::traits::FromPrimitive;
use num::bigint::{BigInt, BigUint};

pub struct GenerateCtx<'a, R: ?Sized + 'a> {
    pub rng: &'a mut R,
    pub size: usize
}

impl <'a, R: ?Sized + 'a> GenerateCtx<'a, R> {
    pub fn new(rng: &'a mut R, size: usize) -> Self {
        GenerateCtx { rng: rng, size: size }
    }

    #[inline]
    pub fn chop<'b>(&'b mut self) -> GenerateCtx<'b, R>
        where 'a: 'b
    {
        Self::new(self.rng, self.size/2)
    }

    pub fn gen_size(&mut self) -> usize
        where R: rand::Rng + Sized
    {
        match self.size {
            0 => 0,
            size @ _ if size == <usize>::max_value() => self.rng.gen(),
            size @ _ => self.rng.gen_range(0, size + 1)
        }
    }
}

pub trait Generator {
    type Output;

    fn generate<R: rand::Rng>(&self, &mut GenerateCtx<R>) -> <Self as Generator>::Output;
}

impl <'a, G: Generator> Generator for &'a G {
    type Output = G::Output;

    #[inline]
    fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> Self::Output {
        (*self).generate(ctx)
    }
}

#[derive(Copy, Clone)]
pub struct Constant<T>(pub T);

impl <T: Clone> Generator for Constant<T> {
    type Output = T;

    #[inline]
    fn generate<R: rand::Rng>(&self, _: &mut GenerateCtx<R>) -> T {
        self.0.clone()
    }
}

macro_rules! tuple_impls {
    ($($name:ident),*) => {
        impl <$($name: Generator),*> Generator for ($($name,)*) {
            type Output = ($($name::Output,)*);

            #[inline]
            #[allow(unused_variables, non_snake_case)]
            fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> Self::Output {
                let ( $(ref $name,)* ) = *self;
                ($($name.generate(ctx),)*)
            }
        }
    }
}

macro_tuples_impl!{tuple_impls}

pub struct IntegerGenerator<X>(PhantomData<fn() -> X>);

impl <X> IntegerGenerator<X> where IntegerGenerator<X>: Generator
{
    pub fn new() -> Self { IntegerGenerator(PhantomData) }
}

macro_rules! int_impls {
    ($($ty:ty),*) => {
        $(
            impl Generator for IntegerGenerator<$ty>
            {
                type Output = $ty;

                fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> $ty {
                    if ctx.size == 0 { return 0; }
                    let cast_size = <$ty>::from_usize(ctx.size);
                    let upper_bound = cast_size.and_then(|s| s.checked_add(1));
                    let lower_bound = cast_size.and_then(|s| s.checked_mul(-1));
                    match (lower_bound, upper_bound) {
                        (Some(lower), Some(upper)) => ctx.rng.gen_range(lower, upper),
                        _ => ctx.rng.gen()
                    }
                }
            }
        )*
    }
}

int_impls! { i8, i16, i32, i64, isize }

impl Generator for IntegerGenerator<BigInt>
{
    type Output = BigInt;

    #[inline]
    fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> BigInt {
        BigInt::from_i64(IntegerGenerator::<i64>::new().generate(ctx)).unwrap()
    }
}

pub struct UnsignedIntegerGenerator<X>(PhantomData<fn() -> X>);

impl <X> UnsignedIntegerGenerator<X> where UnsignedIntegerGenerator<X>: Generator
{
    pub fn new() -> Self { UnsignedIntegerGenerator(PhantomData) }
}

macro_rules! uint_impls {
    ($($ty:ty),*) => {
        $(
            impl Generator for UnsignedIntegerGenerator<$ty>
            {
                type Output = $ty;

                fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> $ty {
                    if ctx.size == 0 { return 0; }
                    let upper_bound = <$ty>::from_usize(ctx.size).and_then(|s| s.checked_add(1));
                    match upper_bound {
                        Some(upper) => ctx.rng.gen_range(0, upper),
                        _ => ctx.rng.gen()
                    }
                }
            }
        )*
    }
}

uint_impls! { u8, u16, u32, u64, usize, i8, i16, i32, i64, isize }

impl Generator for UnsignedIntegerGenerator<BigUint>
{
    type Output = BigUint;

    #[inline]
    fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> BigUint {
        BigUint::from_u64(UnsignedIntegerGenerator::<u64>::new().generate(ctx)).unwrap()
    }
}

pub struct FromIteratorGenerator<C, G> {
    generator: G,
    _marker: PhantomData<fn() -> C>
}

impl <C, G> FromIteratorGenerator<C, G>
    where FromIteratorGenerator<C, G>: Generator
{
    pub fn new(generator: G) -> Self {
        FromIteratorGenerator { generator: generator, _marker: PhantomData }
    }
}

impl <C, G> Generator for FromIteratorGenerator<C, G>
    where G: Generator,
          C: FromIterator<G::Output>
{
    type Output = C;

    fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> Self::Output {
        let size = ctx.gen_size();
        let mut chopped_ctx = ctx.chop();
        (0..size).map(|_| self.generator.generate(&mut chopped_ctx)).collect()
    }
}

pub struct OptionGenerator<G> {
    generator: G
}

impl <G> OptionGenerator<G>
    where OptionGenerator<G>: Generator
{
    pub fn new(generator: G) -> Self { OptionGenerator { generator: generator } }
}

impl <G: Generator> Generator for OptionGenerator<G> {
    type Output = Option<G::Output>;

    fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> Self::Output {
        match ctx.rng.gen() {
            true => Some(self.generator.generate(ctx)),
            false => None
        }
    }
}

pub struct ResultGenerator<GOk, GErr> {
    g_ok: GOk,
    g_err: GErr
}

impl <GOk, GErr> ResultGenerator<GOk, GErr>
    where ResultGenerator<GOk, GErr>: Generator
{
    pub fn new(g_ok: GOk, g_err: GErr) -> Self { ResultGenerator { g_ok: g_ok, g_err: g_err } }
}

impl <GOk: Generator, GErr: Generator> Generator for ResultGenerator<GOk, GErr> {
    type Output = Result<GOk::Output, GErr::Output>;

    fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> Self::Output {
        match ctx.rng.gen() {
            true => Ok(self.g_ok.generate(ctx)),
            false => Err(self.g_err.generate(ctx))
        }
    }
}

pub struct RandGenerator<T>(PhantomData<fn() -> T>);

impl <T> RandGenerator<T>
    where RandGenerator<T>: Generator
{
    pub fn new() -> Self {
        RandGenerator(PhantomData)
    }
}

impl <T: rand::Rand> Generator for RandGenerator<T> {
    type Output = T;

    fn generate<R: rand::Rng>(&self, ctx: &mut GenerateCtx<R>) -> Self::Output {
        ctx.rng.gen()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use rand;

    #[test]
    fn gen_unit() {
        let mut rng = rand::thread_rng(); let mut ctx = GenerateCtx::new(&mut rng, 5);
        assert_eq!(().generate(&mut ctx), ());
    }

    #[test]
    fn gen_u8() {
        let mut rng = rand::thread_rng(); let mut ctx = GenerateCtx::new(&mut rng, 5);
        let gen = UnsignedIntegerGenerator::<u8>::new();
        rep(&mut || { let n = gen.generate(&mut ctx); assert!(n <= 5); });
    }

    #[test]
    fn gen_i8() {
        let mut rng = rand::thread_rng(); let mut ctx = GenerateCtx::new(&mut rng, 5);
        let gen = UnsignedIntegerGenerator::<i8>::new();
        rep(&mut || { let n = gen.generate(&mut ctx); assert!((n >= -5) && (n <= 5)); });
    }

    fn rep<F>(f: &mut F) where F: FnMut() -> () {
        for _ in 0..100 {
            f()
        }
    }
}