queuecheck/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
// Copyright 2017 Kyle Mayes
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! A thread-safe queue testing and benchmarking library.
#![warn(missing_copy_implementations, missing_debug_implementations, missing_docs)]
use std::ops::{Range};
use std::time::{Duration};
//================================================
// Macros
//================================================
// queuecheck_bench_latency! _____________________
/// Benchmarks the latency of the supplied queue.
///
/// # Example
///
/// The below benchmarks the latency of the unbounded MPMC queue from the standard library by
/// producing 100,000 items using two producer threads which are then consumed by one consumer
/// thread.
///
/// ```
/// # #[macro_use] extern crate queuecheck;
/// # fn main() {
/// use std::sync::mpsc::{self, Receiver, Sender};
///
/// let (producer, consumer) = mpsc::channel();
///
/// let latency = queuecheck_bench_latency!(
/// // warmup and measurement enqueue/dequeue operation pairs
/// (1_000, 100_000),
/// // producer threads
/// vec![producer.clone(), producer],
/// // consumer threads
/// vec![consumer],
/// // produce operation
/// |p: &Sender<i32>, i: i32| p.send(i).unwrap(),
/// // consume operation
/// |c: &Receiver<i32>| c.try_recv().ok()
/// );
///
/// latency.report("mpmc", &[50.0, 70.0, 90.0, 95.0, 99.09]);
/// # }
/// ```
///
/// ## Sample Output
///
/// ```console
/// mpmc
/// produce
/// 50%: 239.00ns
/// 70%: 253.00ns
/// 90%: 278.00ns
/// 95%: 294.00ns
/// 99%: 970.00ns
/// consume
/// 50%: 178.00ns
/// 70%: 249.00ns
/// 90%: 279.00ns
/// 95%: 295.00ns
/// 99%: 1_578.00ns
/// ```
#[macro_export]
macro_rules! queuecheck_bench_latency {
($pairs:expr, $producers:expr, $consumers:expr, $produce:expr, $consume:expr) => ({
use std::thread;
use std::sync::{Arc, Barrier};
use std::time::{Instant};
let (warmup, measurement) = $pairs;
let producers = $producers;
let consumers = $consumers;
let plength = producers.len();
let clength = consumers.len();
let barrier = Arc::new(Barrier::new(plength + clength));
let pwranges = $crate::partition(plength, warmup).into_iter();
let pmranges = $crate::partition(plength, measurement).into_iter();
let pthreads = producers.into_iter().zip(pwranges).zip(pmranges).map(|((p, w), m)| {
let barrier = barrier.clone();
thread::spawn(move || {
barrier.wait();
// Warmup
for index in w { $produce(&p, index); }
// Measurement
m.map(|i| {
let start = Instant::now();
$produce(&p, i);
Instant::now() - start
}).collect::<Vec<_>>().into_iter()
})
}).collect::<Vec<_>>().into_iter();
let cwranges = $crate::partition(clength, warmup).into_iter();
let cmranges = $crate::partition(clength, measurement).into_iter();
let cthreads = consumers.into_iter().zip(cwranges).zip(cmranges).map(|((c, w), m)| {
let barrier = barrier.clone();
thread::spawn(move || {
barrier.wait();
// Warmup
for _ in w { while $consume(&c).is_none() { } }
// Measurement
m.map(|_| {
let start = Instant::now();
while $consume(&c).is_none() { }
Instant::now() - start
}).collect::<Vec<_>>().into_iter()
})
}).collect::<Vec<_>>().into_iter();
let produce = pthreads.flat_map(|t| t.join().unwrap().map($crate::nanoseconds)).collect();
let consume = cthreads.flat_map(|t| t.join().unwrap().map($crate::nanoseconds)).collect();
$crate::Latency::new(produce, consume)
});
}
// queuecheck_bench_throughput! __________________
/// Benchmarks the throughput of the supplied queue.
///
/// # Example
///
/// The below benchmarks the throughput of the unbounded MPMC queue from the standard library by
/// producing 100,000 items using two producer threads which are then consumed by one consumer
/// thread.
///
/// ```
/// # #[macro_use] extern crate queuecheck;
/// # fn main() {
/// use std::sync::mpsc::{self, Receiver, Sender};
///
/// let (producer, consumer) = mpsc::channel();
///
/// let ops = queuecheck_bench_throughput!(
/// // warmup and measurement enqueue/dequeue operation pairs
/// (1_000, 100_000),
/// // producer threads
/// vec![producer.clone(), producer],
/// // consumer threads
/// vec![consumer],
/// // produce operation
/// |p: &Sender<i32>, i: i32| p.send(i).unwrap(),
/// // consume operation
/// |c: &Receiver<i32>| c.try_recv().ok()
/// );
///
/// println!("{:.3} operation/second", ops);
/// # }
/// ```
#[macro_export]
macro_rules! queuecheck_bench_throughput {
($pairs:expr, $producers:expr, $consumers:expr, $produce:expr, $consume:expr) => ({
use std::thread;
use std::sync::{Arc, Barrier};
use std::time::{Duration, Instant};
let (warmup, measurement) = $pairs;
let producers = $producers;
let consumers = $consumers;
let plength = producers.len();
let clength = consumers.len();
let barrier = Arc::new(Barrier::new(plength + clength));
let pwranges = $crate::partition(plength, warmup).into_iter();
let pmranges = $crate::partition(plength, measurement).into_iter();
let pthreads = producers.into_iter().zip(pwranges).zip(pmranges).map(|((p, w), m)| {
let barrier = barrier.clone();
thread::spawn(move || {
barrier.wait();
// Warmup
for index in w { $produce(&p, index); }
// Measurement
let start = Instant::now();
for index in m { $produce(&p, index); }
Instant::now() - start
})
}).collect::<Vec<_>>().into_iter();
let cwranges = $crate::partition(clength, warmup).into_iter();
let cmranges = $crate::partition(clength, measurement).into_iter();
let cthreads = consumers.into_iter().zip(cwranges).zip(cmranges).map(|((c, w), m)| {
let barrier = barrier.clone();
thread::spawn(move || {
barrier.wait();
// Warmup
for _ in w { while $consume(&c).is_none() { } }
// Measurement
let start = Instant::now();
for _ in m { while $consume(&c).is_none() { } }
Instant::now() - start
})
}).collect::<Vec<_>>().into_iter();
let mut duration = Duration::default();
duration += pthreads.map(|t| t.join().unwrap()).sum();
duration += cthreads.map(|t| t.join().unwrap()).sum();
duration /= (clength + plength) as u32;
(measurement as f64 / $crate::nanoseconds(duration)) * 1_000_000_000.0
});
}
// queuecheck_test! ______________________________
/// Tests the supplied queue.
///
/// # Example
///
/// The below tests the unbounded MPMC queue from the standard library by producing 100,000 items
/// using two producer threads which are then consumed by one consumer thread.
///
/// ```
/// # #[macro_use] extern crate queuecheck;
/// # fn main() {
/// use std::sync::mpsc::{self, Receiver, Sender};
///
/// let (producer, consumer) = mpsc::channel();
///
/// queuecheck_test!(
/// // enqueue/dequeue operation pairs
/// 100_000,
/// // producer threads
/// vec![producer.clone(), producer],
/// // consumer threads
/// vec![consumer],
/// // produce operation
/// |p: &Sender<String>, i: String| p.send(i).unwrap(),
/// // consume operation
/// |c: &Receiver<String>| c.try_recv().ok()
/// );
/// # }
/// ```
#[macro_export]
macro_rules! queuecheck_test {
($pairs:expr, $producers:expr, $consumers:expr, $produce:expr, $consume:expr) => ({
use std::thread;
use std::sync::{Arc, Barrier};
let pairs = $pairs;
let producers = $producers;
let consumers = $consumers;
let barrier = Arc::new(Barrier::new(producers.len() + consumers.len()));
let pranges = $crate::partition(producers.len(), pairs).into_iter();
let pthreads = producers.into_iter().zip(pranges).map(|(p, r)| {
let barrier = barrier.clone();
thread::spawn(move || {
barrier.wait();
for index in r { $produce(&p, index.to_string()); }
})
}).collect::<Vec<_>>();
let cranges = $crate::partition(consumers.len(), pairs).into_iter();
let cthreads = consumers.into_iter().zip(cranges).map(|(c, r)| {
let barrier = barrier.clone();
thread::spawn(move || {
barrier.wait();
let mut indices = Vec::with_capacity(r.len());
while indices.len() < r.len() {
if let Some(index) = $consume(&c) {
match index.parse::<usize>() {
Ok(index) => indices.push(index),
_ => panic!("invalid index string: {:?}", index),
}
}
}
indices
})
}).collect::<Vec<_>>();
for thread in pthreads { thread.join().unwrap(); }
let mut indices = Vec::with_capacity(pairs);
for thread in cthreads { indices.extend(thread.join().unwrap()); }
indices.sort();
let expected = (0..pairs).filter(|i| indices.binary_search(i).is_err()).collect::<Vec<_>>();
let unexpected = indices.iter().cloned().filter(|i| *i >= pairs).collect::<Vec<_>>();
if !expected.is_empty() || !unexpected.is_empty() {
panic!("dropped: {:?}, invalid: {:?}", expected, unexpected);
}
});
}
//================================================
// Structs
//================================================
// Data __________________________________________
/// A collection of data.
#[derive(Clone, Debug)]
pub struct Data(Vec<f64>);
impl Data {
//- Accessors --------------------------------
/// Returns the percentile with the supplied rank.
pub fn percentile(&self, rank: f64) -> f64 {
assert!(rank >= 0.0 && rank <= 100.0, "`rank` must be in the range [0.0, 100.0]");
self.0[((self.0.len() - 1) as f64 * (rank / 100.0)) as usize]
}
//- Accessors --------------------------------
/// Prints a data report to the console for the percentiles with the supplied ranks.
fn report(&self, name: &str, ranks: &[f64]) {
println!(" {}", name);
for rank in ranks {
let name = format!("{}%:", rank);
println!(" {:<10} {}ns", name, thousands(self.percentile(*rank), 2));
}
}
}
// Latency _______________________________________
/// A measurement of the latency of a queue.
#[derive(Clone, Debug)]
pub struct Latency {
/// The enqueue operation latencies in nanoseconds.
pub produce: Data,
/// The dequeue operation latencies in nanoseconds.
pub consume: Data,
}
impl Latency {
//- Constructors -----------------------------
/// Constructs a new `Latency`.
pub fn new(mut produce: Vec<f64>, mut consume: Vec<f64>) -> Self {
produce.sort_by(|a, b| a.partial_cmp(b).unwrap());
consume.sort_by(|a, b| a.partial_cmp(b).unwrap());
Latency { produce: Data(produce), consume: Data(consume) }
}
//- Accessors --------------------------------
/// Prints a latency report to the console for the percentiles with the supplied ranks.
pub fn report(&self, name: &str, ranks: &[f64]) {
println!("{}", name);
self.produce.report("produce", ranks);
self.consume.report("consume", ranks);
}
}
//================================================
// Functions
//================================================
/// Returns the supplied number formatted with thousands separators.
fn thousands(number: f64, precision: usize) -> String {
let mut string = format!("{:.*}", precision, number);
let mut index = string.find('.').unwrap();
while index > 3 {
index -= 3;
string.insert(index, '_');
}
string
}
/// Returns the supplied duration converted to nanoseconds.
#[doc(hidden)]
pub fn nanoseconds(duration: Duration) -> f64 {
(duration.as_secs() * 1_000_000_000) as f64 + duration.subsec_nanos() as f64
}
/// Partitions the supplied number of operations into ranges.
#[doc(hidden)]
pub fn partition(threads: usize, operations: usize) -> Vec<Range<i32>> {
let factor = operations / threads;
(0..threads).map(|t| {
let end = if t + 1 == threads { operations } else { factor * (t + 1) };
((factor * t) as i32)..(end as i32)
}).collect()
}