1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//! A simple and easy wrapper around `Vec` to implement a FIFO queue. This is
//! no fancy, advanced data type but something simple you can use easily until
//! or unless you need something different.
//!
//! # Example
//!
//! ```
//! use queue::Queue;
//!
//! let mut q = Queue::new();
//!
//! q.queue("hello").unwrap();
//! q.queue("out").unwrap();
//! q.queue("there!").unwrap();
//!
//! while let Some(item) = q.dequeue() {
//!     println!("{}", item);
//! }
//! ```
//!
//! Outputs:
//!
//! ```text
//! hello
//! out
//! there!
//! ```

#[cfg(test)]
mod tests;

/// A first in, first out queue built around `Vec`.
///
/// An optional capacity can be set (or changed) to ensure the `Queue` never
/// grows past a certain size. If the capacity is not specified (ie set to
/// `None`) then the `Queue` will grow as needed. If you're worried about
/// memory allocation, set a capacity and the necessary memory will be
/// allocated at that time. Otherwise memory could be allocated, deallocated
/// and reallocated as the `Queue` changes size.
///
/// The only requirement of the type used is that it implements the `Clone`
/// trait.
///
/// # Example
///
/// ```
/// use queue::Queue;
///
/// let mut q = Queue::with_capacity(5);
///
/// for i in 0..5 {
/// 	q.queue(i).unwrap();
/// }
///
/// for i in 0..5 {
/// 	assert_eq!(q.dequeue(), Some(i));
/// }
/// ```
#[derive(Clone, Debug, Default)]
pub struct Queue<T> {
	vec: Vec<T>,
	cap: Option<usize>,
}

impl<T: Clone> From<Vec<T>> for Queue<T> {
	/// Constructs a new `Queue<T>` from a `Vec<T>`.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let q = Queue::from(vec![1, 2, 3]);
	/// ```
	fn from(v: Vec<T>) -> Queue<T> {
		Queue {
			vec: v,
			cap: None
		}
	}
}

impl<T: Clone> Queue<T> {
	/// Constructs a new `Queue<T>`.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q: Queue<String> = Queue::new();
	/// ```
	pub fn new() -> Queue<T> {
		Queue {
			vec: Vec::new(),
			cap: None,
		}
	}

	/// Constructs a new `Queue<T>` with a specified capacity.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q: Queue<String> = Queue::with_capacity(20);
	/// ```
	pub fn with_capacity(cap: usize) -> Queue<T> {
		Queue {
			vec: Vec::with_capacity(cap),
			cap: Some(cap),
		}
	}

	/// Add an item to the end of the `Queue`. Returns `Ok(usize)` with the new
	/// length of the `Queue`, or `Err(())` if there is no more room.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q = Queue::new();
	/// q.queue("hello").unwrap();
	/// assert_eq!(q.peek(), Some("hello"));
	/// ```
	pub fn queue(&mut self, item: T) -> Result<usize, ()> {
		if let Some(cap) = self.cap {
			if self.vec.len() >= cap {
				Err(())
			} else {
				self.vec.push(item);
				Ok(self.vec.len())
			}
		} else {
			self.vec.push(item);
			Ok(self.vec.len())
		}
	}

	/// Forcefully add an item to the end of the `Queue`. If the `Queue` is at
	/// capacity, the first item will be removed to make room. Returns `usize`
	/// with the new length of the `Queue`.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q = Queue::with_capacity(1);
	/// q.queue("hello").unwrap();
	/// let _ = q.force_queue("world");
	/// assert_eq!(q.peek(), Some("world"));
	/// ```
	pub fn force_queue(&mut self, item: T) -> usize {
		if let Ok(len) = self.queue(item.clone()) {
			return len;
		} else {
			let _ = self.dequeue();
			return self.queue(item.clone()).unwrap();
		}
	}

	/// Remove the next item from the `Queue`. Returns `Option<T>` so it will
	/// return either `Some(T)` or `None` depending on if there's anything in
	/// the `Queue` to get.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q = Queue::new();
	/// q.queue("hello").unwrap();
	/// q.queue("world").unwrap();
	/// assert_eq!(q.dequeue(), Some("hello"));
	/// ```
	pub fn dequeue(&mut self) -> Option<T> {
		if !self.vec.is_empty() {
			Some(self.vec.remove(0))
		} else {
			None
		}
	}

	/// Return a `&Vec<T>` for the `Queue<T>`.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q = Queue::new();
	/// q.queue(1).unwrap();
	/// q.queue(2).unwrap();
	/// q.queue(3).unwrap();
	/// assert_eq!(&vec![1, 2, 3], q.vec());
	/// ```
	pub fn vec(&self) -> &Vec<T> {
		&self.vec
	}

	/// Peek at the next item in the `Queue`, if there's something there.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q = Queue::new();
	/// q.queue(12).unwrap();
	/// assert_eq!(q.peek(), Some(12));
	/// ```
	pub fn peek(&self) -> Option<T> {
		if !self.vec.is_empty() {
			Some(self.vec[0].clone())
		} else {
			None
		}
	}

	/// The number of items currently in the `Queue`.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q = Queue::with_capacity(8);
	/// q.queue(1).unwrap();
	/// q.queue(2).unwrap();
	/// assert_eq!(q.len(), 2);
	/// ```
	pub fn len(&self) -> usize {
		self.vec.len()
	}

	/// Check if the `Queue` is empty.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q = Queue::new();
	/// assert_eq!(q.is_empty(), true);
	/// q.queue(1).unwrap();
	/// assert_eq!(q.is_empty(), false);
	/// ```
	pub fn is_empty(&self) -> bool {
		self.vec.is_empty()
	}

	/// Query the capacity for a `Queue`. If there is no capacity set (the
	/// `Queue` can grow as needed) then `None` will be returned, otherwise
	/// it will be `Some(usize)`.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let q: Queue<u8> = Queue::with_capacity(12);
	/// assert_eq!(q.capacity(), Some(12));
	/// ```
	pub fn capacity(&self) -> Option<usize> {
		self.cap
	}

	/// Modify the capacity of a `Queue`. If set to `None`, the `Queue` will
	/// grow automatically, as needed. Otherwise, it will be limited to the
	/// specified number of items. If there are more items in the `Queue` than
	/// the requested capacity, `Err(())` will be returned, otherwise the
	/// operation will succeed and `Ok(())` will be returned. If the capacity
	/// is shrunk, the underlying `Vec` will be shrunk also, which would free
	/// up whatever extra memory was allocated for the `Queue`.
	///
	/// # Example
	///
	/// ```
	/// # use queue::Queue;
	/// let mut q: Queue<u8> = Queue::new();
	/// q.set_capacity(12).unwrap();
	/// q.set_capacity(None).unwrap();
	/// ```
	pub fn set_capacity<C: Into<Option<usize>>>(&mut self, cap: C) -> Result<(), ()> {
		let cap = cap.into();

		if cap == None {
			self.cap = None;
			return Ok(());
		}

		if cap == self.cap {
			return Ok(());
		}

		let cap = cap.unwrap();

		if cap < self.vec.len() {
			return Err(());
		}

		if let Some(scap) = self.cap {
			if cap < scap {
				self.vec.shrink_to_fit();
			}
		}

		let r = cap - self.vec.len();
		self.vec.reserve_exact(r);
		self.cap = Some(cap);

		Ok(())
	}
}