1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
//! # queriable_storage
//!
//! `queriable_storage` is a create that provides the [QueriableDataStore](QueriableDataStore) that can be queried by multiple filters.

//! # Examples
//! ```
//! use queriable_storage::QueriableDataStore;
//! struct Person {
//!     first_name: &'static str,
//!     last_name: &'static str,
//!     age: u32,
//! }
//! let persons:Vec<Person> = vec![/* ...*/];
//! let storage: QueriableDataStore<Person> = persons.into();
//! let first_name_index = storage.get_index(|v| v.first_name);
//! let last_name_index = storage.get_index(|v| v.last_name);
//! let age_index = storage.get_index(|v| v.age);
//! let filtered: Vec<&Person> = storage
//!     .filter(
//!         (first_name_index.filter_eq("Isaiah") & last_name_index.filter_eq("Mccarthy"))
//!             | (age_index.filter_lt(30) | age_index.filter_gte(60)),
//!     )
//!     .collect();
//! ```
use std::{
    collections::BTreeMap,
    ops::{BitAnd, BitOr, Bound::*, RangeBounds},
};

use iter_set::{intersection, union};

///Data structure that can be queried by multiple filters.
///Its not allowed to modify data after the generation of the data store.
pub struct QueriableDataStore<T> {
    items: Vec<T>,
}

impl<T> QueriableDataStore<T> {
    ///Get all entries of the [DataStore](QueriableDataStore) that match the filter.
    pub fn filter(&self, filter: DataFilter) -> impl Iterator<Item = &T> {
        filter.indices.into_iter().map(move |v| &self.items[v])
    }

    ///Get a new [Index](SortedIndex) for the [DataStore](QueriableDataStore) for the provided key.
    pub fn get_index<F, U>(&self, index_provider: F) -> SortedIndex<U>
    where
        F: Fn(&T) -> U,
        U: Ord,
    {
        SortedIndex::new(self, index_provider)
    }

    ///Iterate over all items in the [DataStore](QueriableDataStore).
    pub fn items(&self) -> impl Iterator<Item = &T> {
        self.items.iter()
    }
}

impl<T> From<Vec<T>> for QueriableDataStore<T> {
    fn from(items: Vec<T>) -> Self {
        Self { items }
    }
}

///Index of a [DataStore](QueriableDataStore).
#[derive(Clone, Eq, PartialEq)]
pub struct SortedIndex<T> {
    pairs: BTreeMap<T, Vec<usize>>,
}

impl<T> SortedIndex<T>
where
    T: Ord,
{
    ///Creates a new [Index](SortedIndex) from a [DataStore](QueriableDataStore) for the index provided by the index_provider function.
    pub fn new<F, U>(data_store: &QueriableDataStore<U>, index_provider: F) -> Self
    where
        F: Fn(&U) -> T,
    {
        let mut pairs: BTreeMap<T, Vec<usize>> = BTreeMap::new();

        for (index, item) in data_store.items().enumerate() {
            let key = index_provider(item);
            pairs.entry(key).or_insert_with(|| vec![]).push(index);
        }

        Self { pairs }
    }

    ///Get a new [DataFilter](DataFilter) for all items in the given range.
    pub fn filter_range<R>(&self, range: R) -> DataFilter
    where
        R: RangeBounds<T>,
    {
        let filtered = self
            .pairs
            .range(range)
            .into_iter()
            .flat_map(|(_, indices)| indices.iter().cloned());
        DataFilter::from_unsorted(filtered)
    }

    ///Get a new [DataFilter](DataFilter) for all items between the given values (including lower and upper value).
    pub fn filter_between(&self, lower_inclusive: T, upper_inclusive: T) -> DataFilter {
        self.filter_range((Included(lower_inclusive), Included(upper_inclusive)))
    }

    ///Get a new [DataFilter](DataFilter) for all items that are equivalent to the given value.
    pub fn filter_eq(&self, value: T) -> DataFilter {
        if let Some(keys) = self.pairs.get(&value) {
            DataFilter::from_unsorted(keys.iter().cloned())
        } else {
            DataFilter::default()
        }
    }

    ///Get a new [DataFilter](DataFilter) for all items that are greater than the given value.
    pub fn filter_gt(&self, lower_limit: T) -> DataFilter {
        self.filter_range((Excluded(lower_limit), Unbounded))
    }

    ///Get a new [DataFilter](DataFilter) for all items that are greater than ore equal to the given value.
    pub fn filter_gte(&self, lower_limit: T) -> DataFilter {
        self.filter_range((Included(lower_limit), Unbounded))
    }

    ///Get a new [DataFilter](DataFilter) for all items that are less than the given value.
    pub fn filter_lt(&self, upper_limit: T) -> DataFilter {
        self.filter_range((Unbounded, Excluded(upper_limit)))
    }

    ///Get a new [DataFilter](DataFilter) for all items that are less than ore equal to the given value.
    pub fn filter_lte(&self, upper_limit: T) -> DataFilter {
        self.filter_range((Unbounded, Included(upper_limit)))
    }

    ///Get the first element in the index
    pub fn first(&self) -> DataFilter {
        DataFilter::from_unsorted(
            self.pairs
                .iter()
                .flat_map(|v| v.1.iter())
                .cloned()
                .nth(0)
                .into_iter(),
        )
    }

    ///Get the first n elements of the index (less if the amount of items is smaller then n)
    pub fn first_n(&self, n: usize) -> DataFilter {
        DataFilter::from_unsorted(self.pairs.iter().flat_map(|v| v.1.iter()).cloned().take(n))
    }

    ///Get the last element in the index
    pub fn last(&self) -> DataFilter {
        DataFilter::from_unsorted(
            self.pairs
                .iter()
                .rev()
                .flat_map(|v| v.1.iter())
                .cloned()
                .nth(0)
                .into_iter(),
        )
    }

    ///Get the last n elements of the index (less if the amount of items is smaller then n)
    pub fn last_n(&self, n: usize) -> DataFilter {
        DataFilter::from_unsorted(
            self.pairs
                .iter()
                .rev()
                .flat_map(|v| v.1.iter())
                .cloned()
                .take(n),
        )
    }
}

///Contains all items that match a given filter.
///Can be combined with the bitwise logical operators (& |).
#[derive(Default)]
pub struct DataFilter {
    indices: Vec<usize>,
}

impl DataFilter {
    ///Creates a [DataFilter](DataFilter) from an unsorted list of indices.
    fn from_unsorted<T>(unsorted_indices: T) -> Self
    where
        T: Iterator<Item = usize>,
    {
        let mut indices: Vec<usize> = unsorted_indices.collect();
        indices.sort();
        Self { indices }
    }
}

impl BitAnd for DataFilter {
    type Output = DataFilter;

    fn bitand(self, other: DataFilter) -> Self::Output {
        Self {
            indices: intersection(self.indices, other.indices).collect(),
        }
    }
}

impl BitOr for DataFilter {
    type Output = DataFilter;

    fn bitor(self, other: DataFilter) -> Self::Output {
        Self {
            indices: union(self.indices, other.indices).collect(),
        }
    }
}