1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
pub mod simulate;
pub mod space;
pub mod state;
mod tests;
pub use self::simulate::*;
pub use self::space::*;
pub use self::state::*;
use error::*;
use id::*;
use petgraph::algo::astar;
use petgraph::graphmap::UnGraphMap;
use rayon::prelude::*;
use std::collections::hash_set::Iter;
use std::collections::{HashMap, HashSet};
/// Short hand type alias for space graph.
pub type SpaceGraph = UnGraphMap<ID, ()>;
/// Short hand type alias for space map.
pub type SpaceMap<S> = HashMap<ID, Space<S>>;
/// Object that represents quantized density fields.
///
/// # Concept
/// QDF does not exists in any space - it IS the space, it defines it,
/// it describes it so there are no space coordinates and it is your responsibility to deliver it.
/// In future releases this crate will have module for projecting QDF into Euclidean space
/// and will have a satelite crate to easlyy traverse and visualize space.
///
/// To sample specified region you have to know some space ID and gather the rest of information
/// based on it neighbors spaces.
/// It gives the ability to cotrol space density at specified locations, which can be used
/// for example to simulate space curvature based on gravity.
#[derive(Debug)]
pub struct QDF<S>
where
S: State,
{
id: ID,
graph: SpaceGraph,
spaces: SpaceMap<S>,
space_ids: HashSet<ID>,
dimensions: usize,
}
impl<S> QDF<S>
where
S: State,
{
/// Creates new QDF information universe along with root space ID.
///
/// # Arguments
/// * `dimensions` - Number of dimensions which space contains.
/// * `root_state` - State of root space.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// // Creates 2d space with `16` as root state.
/// let (qdf, root) = QDF::new(2, 9);
/// assert_eq!(*qdf.space(root).state(), 9);
/// ```
pub fn new(dimensions: usize, root_state: S) -> (Self, ID) {
let mut graph = UnGraphMap::new();
let mut spaces = HashMap::new();
let mut space_ids = HashSet::new();
let id = ID::new();
graph.add_node(id);
spaces.insert(id, Space::new(id, root_state));
space_ids.insert(id);
let qdf = Self {
id: ID::new(),
graph,
spaces,
space_ids,
dimensions,
};
(qdf, id)
}
/// Gets QDF id.
#[inline]
pub fn id(&self) -> ID {
self.id
}
/// Gets QDF dimensions number.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (qdf, _) = QDF::new(2, 9);
/// assert_eq!(qdf.dimensions(), 2);
/// ```
#[inline]
pub fn dimensions(&self) -> usize {
self.dimensions
}
/// Tells if space with given id exists in QDF.
///
/// # Arguments
/// * `id` - space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (qdf, root) = QDF::new(2, 9);
/// assert!(qdf.space_exists(root));
/// ```
#[inline]
pub fn space_exists(&self, id: ID) -> bool {
self.spaces.contains_key(&id)
}
/// Gets iterator over all spaces IDs.
///
/// # Examples
/// ```
/// use quantized_density_fields::{QDF, ID};
///
/// let (mut qdf, root) = QDF::new(2, 9);
/// assert_eq!(qdf.spaces().count(), 1);
/// assert_eq!(*qdf.spaces().nth(0).unwrap(), root);
/// let mut subs = qdf.increase_space_density(root).unwrap();
/// subs.sort();
/// assert_eq!(qdf.spaces().count(), 3);
/// let mut spaces = qdf.spaces().cloned().collect::<Vec<ID>>();
/// spaces.sort();
/// assert_eq!(spaces, subs);
/// ```
#[inline]
pub fn spaces(&self) -> Iter<ID> {
self.space_ids.iter()
}
/// Try to get given space.
///
/// # Arguments
/// * `id` - space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (qdf, root) = QDF::new(2, 9);
/// if let Some(space) = qdf.try_get_space(root) {
/// assert_eq!(*space.state(), 9);
/// }
/// ```
#[inline]
pub fn try_get_space(&self, id: ID) -> Option<&Space<S>> {
self.spaces.get(&id)
}
/// Get given space or throw error if space does not exists.
///
/// # Arguments
/// * `id` - space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (qdf, root) = QDF::new(2, 9);
/// if let Ok(space) = qdf.get_space(root) {
/// assert_eq!(*space.state(), 9);
/// }
/// ```
#[inline]
pub fn get_space(&self, id: ID) -> Result<&Space<S>> {
if let Some(space) = self.spaces.get(&id) {
Ok(space)
} else {
Err(QDFError::SpaceDoesNotExists(id))
}
}
/// Get given space or panic if space does not exists.
///
/// # Arguments
/// * `id` - space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (qdf, root) = QDF::new(2, 9);
/// assert_eq!(*qdf.space(root).state(), 9);
/// ```
#[inline]
pub fn space(&self, id: ID) -> &Space<S> {
&self.spaces[&id]
}
/// Try to set given space state.
///
/// # Arguments
/// * `id` - space id.
/// * `state` - state.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (mut qdf, root) = QDF::new(2, 9);
/// assert!(qdf.try_set_space_state(root, 3));
/// ```
#[inline]
pub fn try_set_space_state(&mut self, id: ID, state: S) -> bool {
self.set_space_state(id, state).is_ok()
}
/// Set given space state or throw error if space does not exists.
///
/// # Arguments
/// * `id` - space id.
/// * `state` - state.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (mut qdf, root) = QDF::new(2, 9);
/// assert!(qdf.set_space_state(root, 3).is_ok());
/// ```
#[inline]
pub fn set_space_state(&mut self, id: ID, state: S) -> Result<()> {
if self.space_exists(id) {
self.spaces.get_mut(&id).unwrap().apply_state(state);
Ok(())
} else {
Err(QDFError::SpaceDoesNotExists(id))
}
}
/// Get list of IDs of given space neighbors or throws error if space does not exists.
///
/// # Arguments
/// * `id` - space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (mut qdf, root) = QDF::new(2, 9);
/// let subs = qdf.increase_space_density(root).unwrap();
/// assert_eq!(qdf.find_space_neighbors(subs[0]).unwrap(), vec![subs[1], subs[2]]);
/// ```
#[inline]
pub fn find_space_neighbors(&self, id: ID) -> Result<Vec<ID>> {
if self.graph.contains_node(id) {
Ok(self.graph.neighbors(id).collect())
} else {
Err(QDFError::SpaceDoesNotExists(id))
}
}
/// Gets list of space IDs that defines shortest path between two spaces,
/// or throws error if space does not exists.
///
/// # Arguments
/// * `from` - source space id.
/// * `to` - target space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (mut qdf, root) = QDF::new(2, 9);
/// let subs = qdf.increase_space_density(root).unwrap();
/// let subs2 = qdf.increase_space_density(subs[0]).unwrap();
/// assert_eq!(qdf.find_path(subs2[0], subs[2]).unwrap(), vec![subs2[0], subs2[1], subs[2]]);
/// ```
pub fn find_path(&self, from: ID, to: ID) -> Result<Vec<ID>> {
if !self.space_exists(from) {
return Err(QDFError::SpaceDoesNotExists(from));
}
if !self.space_exists(to) {
return Err(QDFError::SpaceDoesNotExists(to));
}
if let Some((_, spaces)) = astar(&self.graph, from, |f| f == to, |_| 0, |_| 0) {
Ok(spaces)
} else {
Ok(vec![])
}
}
/// Increases given space density (subdivide space and rebind it properly to its neighbors),
/// or throws error if space does not exists.
///
/// # Arguments
/// * `id` - space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (mut qdf, root) = QDF::new(2, 9);
/// let subs = qdf.increase_space_density(root).unwrap();
/// assert_eq!(subs.len(), 3);
/// ```
pub fn increase_space_density(&mut self, id: ID) -> Result<Vec<ID>> {
if self.space_exists(id) {
let space = self.spaces[&id].clone();
let subs = self.dimensions + 1;
let substates = space.state().subdivide(subs);
let spaces = substates
.iter()
.map(|substate| Space::new(ID::new(), substate.clone()))
.collect::<Vec<Space<S>>>();
for s in &spaces {
let id = s.id();
self.spaces.insert(id, s.clone());
self.graph.add_node(id);
self.space_ids.insert(id);
}
for a in &spaces {
let aid = a.id();
for b in &spaces {
let bid = b.id();
if aid != bid {
self.graph.add_edge(aid, bid, ());
}
}
}
let neighbors = self.graph.neighbors(id).collect::<Vec<ID>>();
for (i, n) in neighbors.iter().enumerate() {
self.graph.remove_edge(*n, id);
self.graph.add_edge(*n, spaces[i].id(), ());
}
self.space_ids.remove(&id);
self.spaces.remove(&id);
Ok(spaces.iter().map(|s| s.id()).collect())
} else {
Err(QDFError::SpaceDoesNotExists(id))
}
}
/// Decreases given space density (merge space children and rebind them properly to theirs
/// neighbors if space has 1 level of subdivision, otherwise perform this operation on its
/// subspaces), or throws error if space does not exists.
///
/// # Arguments
/// * `id` - space id.
///
/// # Examples
/// ```
/// use quantized_density_fields::QDF;
///
/// let (mut qdf, root) = QDF::new(2, 9);
/// let subs = qdf.increase_space_density(root).unwrap();
/// assert_eq!(subs.len(), 3);
/// let root = qdf.decrease_space_density(subs[0]).unwrap().unwrap();
/// assert_eq!(qdf.spaces().len(), 1);
/// assert_eq!(*qdf.spaces().nth(0).unwrap(), root);
/// ```
pub fn decrease_space_density(&mut self, id: ID) -> Result<Option<ID>> {
if self.space_exists(id) {
let neighbor = self.graph.neighbors(id).collect::<Vec<ID>>();
let mut connected = neighbor
.iter()
.filter(|a| {
neighbor
.iter()
.any(|b| **a != *b && self.graph.edge_weight(**a, *b).is_some())
}).cloned()
.collect::<Vec<ID>>();
if connected.len() != self.dimensions {
Ok(None)
} else {
connected.push(id);
let states = connected
.iter()
.map(|i| self.spaces[&i].state())
.cloned()
.collect::<Vec<S>>();
let id = ID::new();
self.graph.add_node(id);
self.space_ids.insert(id);
self.spaces
.insert(id, Space::new(id, State::merge(&states)));
for i in &connected {
let outsiders = self
.graph
.neighbors(*i)
.filter(|n| !connected.contains(n))
.collect::<Vec<ID>>();
for n in outsiders {
self.graph.add_edge(id, n, ());
}
}
for i in connected {
self.graph.remove_node(i);
self.spaces.remove(&i);
self.space_ids.remove(&i);
}
Ok(Some(id))
}
} else {
Err(QDFError::SpaceDoesNotExists(id))
}
}
/// Performs simulation step (go through all platonic spaces and modifies its states based on
/// neighbor states). Actual state simulation is performed by your struct that implements
/// `Simulation` trait.
pub fn simulation_step<M>(&mut self)
where
M: Simulate<S>,
{
let states = self.simulate_states::<M>();
for (id, state) in states {
self.spaces.get_mut(&id).unwrap().apply_state(state);
}
}
/// Does the same as `simulation_step()` but in parallel manner (it may or may not increase
/// simulation performance if simulation is very complex).
pub fn simulation_step_parallel<M>(&mut self)
where
M: Simulate<S>,
{
let states = self.simulate_states_parallel::<M>();
for (id, state) in states {
self.spaces.get_mut(&id).unwrap().apply_state(state);
}
}
/// Performs simulation on QDF like `simulation_step()` but instead of applying results to QDF,
/// it returns simulated platonic space states along with their space ID.
pub fn simulate_states<M>(&self) -> Vec<(ID, S)>
where
M: Simulate<S>,
{
self.space_ids
.iter()
.map(|id| {
let neighbor_states = self
.graph
.neighbors(*id)
.map(|i| self.spaces[&i].state())
.collect::<Vec<&S>>();
(*id, M::simulate(self.spaces[id].state(), &neighbor_states))
}).collect()
}
/// Performs simulation on QDF like `simulation_step_parallel()` but instead of applying
/// results to QDF, it returns simulated platonic space states along with their space ID.
pub fn simulate_states_parallel<M>(&self) -> Vec<(ID, S)>
where
M: Simulate<S>,
{
self.space_ids
.par_iter()
.map(|id| {
let neighbor_states = self
.graph
.neighbors(*id)
.map(|i| self.spaces[&i].state())
.collect::<Vec<&S>>();
(*id, M::simulate(self.spaces[id].state(), &neighbor_states))
}).collect()
}
}