1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
pub mod space;
pub mod state;
mod tests;

pub use self::space::*;
pub use self::state::*;
use error::*;
use id::*;
use petgraph::algo::astar;
use petgraph::graphmap::UnGraphMap;
use std::collections::HashMap;

/// Object that represents quantized density fields.
///
/// # Concept
/// QDF does not exists in any space - it IS the space, it defines it,
/// it describes it so there are no space coordinates and it is your responsibility to deliver it.
/// In future releases this crate will have module for projecting QDF into Euclidean space
/// and will have a satelite crate to easlyy traverse and visualize space.
///
/// To sample specified region you have to know some space ID and gather the rest of information
/// based on it neighbors spaces.
/// It gives the ability to cotrol space density at specified locations, which can be used
/// for example to simulate space curvature based on gravity.
#[derive(Debug)]
pub struct QDF<S>
where
    S: State,
{
    id: ID,
    graph: UnGraphMap<ID, ()>,
    spaces: HashMap<ID, Space<S>>,
    root: ID,
    dimensions: usize,
}

impl<S> QDF<S>
where
    S: State,
{
    /// Creates new QDF information universe.
    ///
    /// # Arguments
    /// * `dimensions` - Number of dimensions which space contains.
    /// * `root_state` - State of root space.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// // Creates 2d space with `16` as root state.
    /// let qdf = QDF::new(2, 9);
    /// assert_eq!(*qdf.state(), 9);
    /// ```
    pub fn new(dimensions: usize, root_state: S) -> Self {
        let mut graph = UnGraphMap::new();
        let mut spaces = HashMap::new();
        let id = ID::new();
        graph.add_node(id);
        spaces.insert(id, Space::with_id(id, root_state));
        Self {
            id: ID::new(),
            graph,
            spaces,
            root: id,
            dimensions,
        }
    }

    /// Gets QDF id.
    #[inline]
    pub fn id(&self) -> ID {
        self.id
    }

    /// Gets QDF root space node id.
    #[inline]
    pub fn root(&self) -> ID {
        self.root
    }

    /// Gets QDF dimensions number.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let qdf = QDF::new(2, 9);
    /// assert_eq!(qdf.dimensions(), 2);
    /// ```
    #[inline]
    pub fn dimensions(&self) -> usize {
        self.dimensions
    }

    /// Gets QDF dimensions number.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let qdf = QDF::new(2, 9);
    /// assert_eq!(*qdf.state(), 9);
    /// ```
    #[inline]
    pub fn state(&self) -> &S {
        self.spaces[&self.root].state()
    }

    /// Tells if space with given id exists in QDF.
    ///
    /// # Arguments
    /// * `id` - space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let qdf = QDF::new(2, 9);
    /// assert!(qdf.space_exists(qdf.root()));
    /// ```
    #[inline]
    pub fn space_exists(&self, id: ID) -> bool {
        self.spaces.contains_key(&id)
    }

    /// Try to get given space.
    ///
    /// # Arguments
    /// * `id` - space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let qdf = QDF::new(2, 9);
    /// if let Some(space) = qdf.try_get_space(qdf.root()) {
    ///     assert_eq!(*space.state(), 9);
    /// }
    /// ```
    #[inline]
    pub fn try_get_space(&self, id: ID) -> Option<&Space<S>> {
        self.spaces.get(&id)
    }

    /// Get given space or throw error if space does not exists.
    ///
    /// # Arguments
    /// * `id` - space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let qdf = QDF::new(2, 9);
    /// if let Ok(space) = qdf.get_space(qdf.root()) {
    ///     assert_eq!(*space.state(), 9);
    /// }
    /// ```
    #[inline]
    pub fn get_space(&self, id: ID) -> Result<&Space<S>> {
        if let Some(space) = self.spaces.get(&id) {
            Ok(space)
        } else {
            Err(QDFError::SpaceDoesNotExists(id))
        }
    }

    /// Get given space or panic if space does not exists.
    ///
    /// # Arguments
    /// * `id` - space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let qdf = QDF::new(2, 9);
    /// assert_eq!(*qdf.space(qdf.root()).state(), 9);
    /// ```
    #[inline]
    pub fn space(&self, id: ID) -> &Space<S> {
        &self.spaces[&id]
    }

    /// Try to set given space state.
    ///
    /// # Arguments
    /// * `id` - space id.
    /// * `state` - state.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let mut qdf = QDF::new(2, 9);
    /// let id = qdf.root();
    /// assert!(qdf.try_set_space_state(id, 3));
    /// ```
    #[inline]
    pub fn try_set_space_state(&mut self, id: ID, state: S) -> bool {
        self.set_space_state(id, state).is_ok()
    }

    /// Set given space state or throw error if space does not exists.
    ///
    /// # Arguments
    /// * `id` - space id.
    /// * `state` - state.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let mut qdf = QDF::new(2, 9);
    /// let id = qdf.root();
    /// assert!(qdf.set_space_state(id, 3).is_ok());
    /// ```
    #[inline]
    pub fn set_space_state(&mut self, id: ID, state: S) -> Result<()> {
        if self.space_exists(id) {
            let substate = state.subdivide(self.dimensions + 1);
            let mut space = self.spaces[&id].clone();
            space.apply_state(state);
            for s in space.subspace() {
                self.set_space_state(*s, substate.clone())?;
            }
            let mut parent = space.parent();
            self.spaces.insert(id, space);
            while parent.is_some() {
                parent = self.recalculate_state(parent.unwrap());
            }
            Ok(())
        } else {
            Err(QDFError::SpaceDoesNotExists(id))
        }
    }

    /// Get list of IDs of given space neighbors or throws error if space does not exists.
    ///
    /// # Arguments
    /// * `id` - space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let mut qdf = QDF::new(2, 9);
    /// let id = qdf.root();
    /// qdf.increase_space_density(id);
    /// let subs = qdf.space(qdf.root()).subspace();
    /// assert_eq!(qdf.find_space_neighbors(subs[0]).unwrap(), vec![subs[1], subs[2]]);
    /// ```
    #[inline]
    pub fn find_space_neighbors(&self, id: ID) -> Result<Vec<ID>> {
        if self.graph.contains_node(id) {
            Ok(self.graph.neighbors(id).collect())
        } else {
            Err(QDFError::SpaceDoesNotExists(id))
        }
    }

    /// Gets list of space IDs that defines shortest path between two spaces,
    /// or throws error if space does not exists.
    ///
    /// # Arguments
    /// * `from` - source space id.
    /// * `to` - target space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let mut qdf = QDF::new(2, 9);
    /// let id = qdf.root();
    /// qdf.increase_space_density(id);
    /// let subs = qdf.space(qdf.root()).subspace().to_vec();
    /// qdf.increase_space_density(subs[0]);
    /// let subs2 = qdf.space(subs[0]).subspace();
    /// assert_eq!(qdf.find_path(subs2[0], subs[2]).unwrap(), vec![subs2[0], subs2[1], subs[2]]);
    /// ```
    pub fn find_path(&self, from: ID, to: ID) -> Result<Vec<ID>> {
        if !self.space_exists(from) {
            return Err(QDFError::SpaceDoesNotExists(from));
        }
        if !self.space_exists(to) {
            return Err(QDFError::SpaceDoesNotExists(to));
        }
        if let Some((_, spaces)) = astar(&self.graph, from, |f| f == to, |_| 0, |_| 0) {
            Ok(spaces)
        } else {
            Ok(vec![])
        }
    }

    /// Increases given space density (subdivide space and rebind it properly to its neighbors),
    /// or throws error if space does not exists.
    ///
    /// # Arguments
    /// * `id` - space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let mut qdf = QDF::new(2, 9);
    /// let id = qdf.root();
    /// qdf.increase_space_density(id);
    /// assert_eq!(qdf.space(qdf.root()).subspace().len(), 3);
    /// ```
    pub fn increase_space_density(&mut self, id: ID) -> Result<()> {
        if self.space_exists(id) {
            let mut space = self.spaces[&id].clone();
            if !space.is_platonic() {
                for s in space.subspace() {
                    self.increase_space_density(*s)?;
                }
            } else {
                let subs = self.dimensions + 1;
                let substate = space.state().subdivide(subs);
                let spaces = (0..subs)
                    .map(|_| Space::with_id_parent_state(ID::new(), id, substate.clone()))
                    .collect::<Vec<Space<S>>>();
                let subspace = spaces.iter().map(|s| s.id()).collect::<Vec<ID>>();

                for s in spaces {
                    let id = s.id();
                    self.spaces.insert(id, s);
                    self.graph.add_node(id);
                }
                for a in &subspace {
                    for b in &subspace {
                        if a != b {
                            self.graph.add_edge(*a, *b, ());
                        }
                    }
                }
                let neighbors = self.graph.neighbors(id).collect::<Vec<ID>>();
                for (i, n) in neighbors.iter().enumerate() {
                    self.graph.remove_edge(*n, id);
                    self.graph.add_edge(*n, subspace[i], ());
                }

                space.apply_subspace(subspace);
                self.spaces.insert(id, space);
            }
            Ok(())
        } else {
            Err(QDFError::SpaceDoesNotExists(id))
        }
    }

    /// Decreases given space density (merge space children and rebind them properly to theirs
    /// neighbors if space has 1 level of subdivision, otherwise perform this operation on its
    /// subspaces), or throws error if space does not exists.
    ///
    /// # Arguments
    /// * `id` - space id.
    ///
    /// # Examples
    /// ```
    /// use quantized_density_fields::QDF;
    ///
    /// let mut qdf = QDF::new(2, 9);
    /// let id = qdf.root();
    /// qdf.increase_space_density(id);
    /// assert_eq!(qdf.space(qdf.root()).subspace().len(), 3);
    /// qdf.decrease_space_density(id);
    /// assert!(qdf.space(qdf.root()).is_platonic());
    /// ```
    pub fn decrease_space_density(&mut self, id: ID) -> Result<bool> {
        if self.space_exists(id) {
            let mut space = self.spaces[&id].clone();
            if space.is_platonic() {
                Ok(true)
            } else {
                let merge = space
                    .subspace()
                    .iter()
                    .map(|id| {
                        if self.spaces[id].is_platonic() {
                            Ok(true)
                        } else {
                            self.decrease_space_density(*id)
                        }
                    }).collect::<Result<Vec<bool>>>()?
                    .iter()
                    .all(|v| *v);
                if merge {
                    let neighbors = space
                        .subspace()
                        .iter()
                        .flat_map(|s| self.graph.neighbors(*s).collect::<Vec<ID>>())
                        .filter(|s| !space.subspace().contains(s))
                        .collect::<Vec<ID>>();
                    for n in neighbors {
                        self.graph.add_edge(id, n, ());
                    }
                    for s in space.subspace() {
                        self.graph.remove_node(*s);
                        self.spaces.remove(s);
                    }
                    space.apply_subspace(vec![]);
                    self.spaces.insert(id, space);
                }
                Ok(false)
            }
        } else {
            Err(QDFError::SpaceDoesNotExists(id))
        }
    }

    /// Decreases given space density (merge space children and rebind them properly to theirs
    /// neighbors), or throws error if space does not exists. Basically it works like
    /// `Self::decrease_space_density()` but merges space to make it completely platonic.
    ///
    /// # Arguments
    /// * `id` - space id.
    #[inline]
    pub fn decrease_space_density_level(&mut self, id: ID) -> Result<()> {
        while !self.decrease_space_density(id)? {}
        Ok(())
    }

    fn recalculate_state(&mut self, id: ID) -> Option<ID> {
        let mut space = self.spaces[&id].clone();
        let states = space
            .subspace()
            .iter()
            .map(|s| self.spaces[&s].state().clone())
            .collect::<Vec<S>>();
        space.apply_state(Subdividable::merge(&states));
        let parent = space.parent();
        self.spaces.insert(id, space);
        parent
    }
}