1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use std::fmt;
use std::ops::{BitXor, BitXorAssign, Not};

/// Representation of a signal (a boolean variable or its complement)
///
/// May be 0, 1, x or !x.
/// Design inputs and constants get a special representation.
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Copy, Default)]
pub struct Signal {
    a: u32,
}

impl Signal {
    /// Constant zero signal
    pub fn zero() -> Signal {
        Signal { a: 0 }
    }

    /// Constant one signal
    pub fn one() -> Signal {
        Signal { a: 1 }
    }

    /// A placeholder signal
    pub(crate) fn placeholder() -> Signal {
        Signal { a: 0x8000_0000 }
    }

    /// Create a signal from a variable index
    pub fn from_var(v: u32) -> Signal {
        Self::from_ind(v + 1)
    }

    /// Create a signal from a design input index
    pub fn from_input(v: u32) -> Signal {
        Self::from_ind(!v)
    }

    /// Create a signal from an index (including zero signal at index 0)
    pub(crate) fn from_ind(v: u32) -> Signal {
        Signal { a: v << 1 }
    }

    /// Obtain the variable index associated with the signal
    pub fn var(&self) -> u32 {
        assert!(self.is_var());
        self.ind() - 1u32
    }

    /// Obtain the design input index associated with the signal
    pub fn input(&self) -> u32 {
        assert!(self.is_input());
        !self.ind() & !0x8000_0000
    }

    /// Obtain the internal index associated with the signal: 0 for a constant, otherwise var() + 1
    pub fn ind(&self) -> u32 {
        self.a >> 1
    }

    /// Returns true if the signal represents a constant
    pub fn is_constant(&self) -> bool {
        self.ind() == 0
    }

    /// Returns true if the signal represents a design input
    pub fn is_input(&self) -> bool {
        self.a & 0x8000_0000 != 0
    }

    /// Returns true if the signal represents an internal variable
    pub fn is_var(&self) -> bool {
        !self.is_input() && !self.is_constant()
    }

    /// Clear the inversion, if set
    pub(crate) fn without_inversion(&self) -> Signal {
        Signal { a: self.a & !1u32 }
    }

    /// Returns true if the signal is implicitly inverted
    ///
    /// False for inputs, variables and zero.
    /// True for their complement and for one.
    pub fn is_inverted(&self) -> bool {
        self.a & 1 != 0
    }

    /// Return the internal representation of the signal
    pub fn raw(&self) -> u32 {
        self.a
    }

    /// Apply a remapping of variable order to the signal
    pub(crate) fn remap_order(&self, t: &[Signal]) -> Signal {
        if !self.is_var() {
            *self
        } else {
            t[self.var() as usize] ^ self.is_inverted()
        }
    }
}

impl From<bool> for Signal {
    fn from(b: bool) -> Signal {
        if b {
            Signal::one()
        } else {
            Signal::zero()
        }
    }
}

impl Not for Signal {
    type Output = Signal;
    fn not(self) -> Signal {
        Signal { a: self.a ^ 1u32 }
    }
}

impl Not for &'_ Signal {
    type Output = Signal;
    fn not(self) -> Signal {
        Signal { a: self.a ^ 1u32 }
    }
}

impl BitXorAssign<bool> for Signal {
    fn bitxor_assign(&mut self, rhs: bool) {
        self.a ^= rhs as u32;
    }
}

impl BitXor<bool> for Signal {
    type Output = Signal;
    fn bitxor(self, rhs: bool) -> Self::Output {
        let mut l = self;
        l ^= rhs;
        l
    }
}

impl BitXor<bool> for &'_ Signal {
    type Output = Signal;
    fn bitxor(self, rhs: bool) -> Self::Output {
        let mut l = *self;
        l ^= rhs;
        l
    }
}

impl BitXor<&bool> for Signal {
    type Output = Signal;
    fn bitxor(self, rhs: &bool) -> Self::Output {
        self ^ *rhs
    }
}

impl BitXor<&bool> for &'_ Signal {
    type Output = Signal;
    fn bitxor(self, rhs: &bool) -> Self::Output {
        self ^ *rhs
    }
}

impl fmt::Display for Signal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.is_constant() {
            let a = self.a & 1;
            write!(f, "{a}")
        } else {
            if self.is_inverted() {
                write!(f, "!")?;
            }
            if *self == Signal::placeholder() {
                write!(f, "##")
            } else if self.is_input() {
                // Representation of inputs
                let v = self.input();
                write!(f, "i{v}")
            } else {
                let v = self.var();
                write!(f, "x{v}")
            }
        }
    }
}

impl fmt::Debug for Signal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(self, f)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_constant() {
        let l0 = Signal::zero();
        let l1 = Signal::one();
        assert_eq!(l0, !l1);
        assert_eq!(l1, !l0);
        assert!(!l0.is_inverted());
        assert!(l1.is_inverted());
        assert_eq!(format!("{l0}"), "0");
        assert_eq!(format!("{l1}"), "1");
    }

    #[test]
    fn test_var() {
        for v in 0u32..10u32 {
            let l = Signal::from_var(v);
            assert!(l.is_var());
            assert!(!l.is_constant());
            assert!(!l.is_input());
            assert_eq!(l.var(), v);
            assert_eq!((!l).var(), v);
            assert!(!l.is_inverted());
            assert!((!l).is_inverted());
            assert_eq!(l ^ false, l);
            assert_eq!(l ^ true, !l);
            assert_eq!(format!("{l}"), format!("x{v}"));
        }
    }

    #[test]
    fn test_input() {
        for v in 0u32..10u32 {
            let l = Signal::from_input(v);
            assert!(!l.is_var());
            assert!(!l.is_constant());
            assert!(l.is_input());
            assert_eq!(l.input(), v);
            assert_eq!((!l).input(), v);
            assert!(!l.is_inverted());
            assert!((!l).is_inverted());
            assert_eq!(l ^ false, l);
            assert_eq!(l ^ true, !l);
            assert_eq!(format!("{l}"), format!("i{v}"));
        }
    }

    #[test]
    fn test_placeholder() {
        let s = Signal::placeholder();
        assert!(s.is_input());
        assert_eq!(s.input(), 0x3fff_ffff);
        assert_eq!(format!("{s}"), "##");
    }

    #[test]
    fn test_comparison() {
        // Boolean conversion
        assert_eq!(Signal::from(false), Signal::zero());
        assert_eq!(Signal::from(true), Signal::one());
        assert_ne!(Signal::from(false), Signal::one());
        assert_ne!(Signal::from(true), Signal::zero());

        // Design variable
        assert_ne!(Signal::from_var(0), Signal::one());
        assert_ne!(Signal::from_var(0), Signal::zero());
        assert_ne!(Signal::from_var(0), Signal::from_var(1));
        assert_ne!(Signal::from_var(0), Signal::from_var(1));

        // Design input
        assert_ne!(Signal::from_input(0), Signal::from_var(0));
        assert_ne!(Signal::from_input(0), Signal::from_var(0));
        assert_ne!(Signal::from_input(0), Signal::one());
        assert_ne!(Signal::from_input(0), Signal::zero());

        // Xor
        assert_eq!(Signal::zero() ^ false, Signal::zero());
        assert_eq!(Signal::zero() ^ true, Signal::one());
        assert_eq!(Signal::one() ^ false, Signal::one());
        assert_eq!(Signal::one() ^ true, Signal::zero());
    }
}