1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A [point/region Quadtree](https://en.wikipedia.org/wiki/Quadtree) with support for overlapping
//! regions.
//!
//! # Quick Start
//! ```
//! use quadtree_rs::{area::AreaBuilder, point::Point, Quadtree};
//!
//! // Instantiate a new quadtree which associates String values with u64 coordinates.
//! let mut qt = Quadtree::<u64, String>::new(/*depth=*/4);
//!
//! // A depth of four means a square with width (and height) 2^4.
//! assert_eq!(qt.width(), 16);
//!
//! // Associate the value "foo" with a rectangle of size 2x1, anchored at (0, 0).
//! let region_a = AreaBuilder::default()
//!     .anchor(Point {x: 0, y: 0})
//!     .dimensions((2, 1))
//!     .build().unwrap();
//! qt.insert(region_a, "foo".to_string());
//!
//! // Query over a region of size 2x2, anchored at (1, 0).
//! let region_b = AreaBuilder::default()
//!     .anchor(Point {x: 1, y: 0})
//!     .dimensions((2, 2))
//!     .build().unwrap();
//! let mut query = qt.query(region_b);
//!
//! // The query region (region_b) intersects the region "foo" is associated with (region_a), so the query iterator returns "foo" by reference.
//! assert_eq!(query.next().unwrap().value_ref(), "foo");
//! ```
//!
//! # Implementation
//! ```
//! use quadtree_rs::{area::AreaBuilder, point::Point, Quadtree};
//!
//! let mut qt = Quadtree::<u8, char>::new(2);
//!
//! // In a quadtree, every region is (lazily) subdivided into subqudrants.
//!
//! // Associating a value with a point, which is represented by a region with dimensions 1x1, means traversing the full height of the quadtree.
//! qt.insert_pt(Point {x: 0, y: 0}, 'a');
//!
//! // (0,0)->4x4                +---+---+---+---+
//! //   (0,0)->2x2              | a |   |       |
//! //     (0,0)->1x1 ['a']      +---+   +       +
//! //                           |       |       |
//! //                           +---+---+---+---+
//! //                           |       |       |
//! //                           +       +       +
//! //                           |       |       |
//! //                           +---+---+---+---+
//!
//! // Often inserting a large region requires traversing only as far down as necessary to fully cover that region.
//! let region_b = AreaBuilder::default()
//!     .anchor(Point {x: 0, y: 0})
//!     .dimensions((2, 2))
//!     .build().unwrap();
//! qt.insert(region_b, 'b');
//!
//! // (0,0)->4x4                +---+---+---+---+
//! //   (0,0)->2x2 ['b']        | a |   |       |
//! //     (0,0)->1x1 ['a']      +---+   +       +
//! //                           |     b |       |
//! //                           +---+---+---+---+
//! //                           |       |       |
//! //                           +       +       +
//! //                           |       |       |
//! //                           +---+---+---+---+
//!
//! // If a region cannot be represented by one node in the tree, a handle type is inserted in multiple places.
//! let region_c = AreaBuilder::default()
//!     .anchor(Point {x: 0, y: 0})
//!     .dimensions((3, 3))
//!     .build().unwrap();
//! qt.insert(region_c, 'c');
//!
//! // (0,0)->4x4                +---+---+---+---+
//! //   (0,0)->2x2 ['b', 'c']   | a |   | c |   |
//! //     (0,0)->1x1 ['a']      +---+   +---+---+
//! //   (0,2)->2x2              |   b,c | c |   |
//! //     (0,2)->1x1 ['c']      +---+---+---+---+
//! //     (1,2)->1x1 ['c']      | c | c | c |   |
//! //   (2,0)->2x2              +---+---+---+---+
//! //     (2,0)->1x1 ['c']      |   |   |   |   |
//! //     (2,1)->1x1 ['c']      +---+---+---+---+
//! //   (2,2)->2x2
//! //     (2,2)->1x1 ['c']
//! ```
//!
//! Duplicating the storage handle allows for fast lookup and insertion at the cost of slow
//! deletion. `quadtree_rs` is well-suited for scenarios with low churn but frequent read access.
//!
//! # Usage
//!
//! For further usage details, see the documentations for the [`Quadtree`] struct.
//!
//! [`Quadtree`]: struct.Quadtree.html

// For extra-pedantic documentation tests.
#![doc(test(attr(deny(warnings))))]

#[macro_use]
extern crate derive_builder;
extern crate num;

pub mod area;
pub mod entry;
pub mod iter;
pub mod point;

mod handle_iter;
mod qtinner;
mod traversal;
mod types;

use {
    crate::{
        area::{Area, AreaBuilder},
        entry::Entry,
        handle_iter::HandleIter,
        iter::{IntoIter, Iter, Query, Regions, Values},
        point::Point,
        qtinner::QTInner,
        traversal::Traversal,
        types::StoreType,
    },
    num::PrimInt,
    std::{
        collections::{HashMap, HashSet},
        default::Default,
        hash::Hash,
    },
};

//   .d88b.  db    db  .d8b.  d8888b. d888888b d8888b. d88888b d88888b
//  .8P  Y8. 88    88 d8' `8b 88  `8D `~~88~~' 88  `8D 88'     88'
//  88    88 88    88 88ooo88 88   88    88    88oobY' 88ooooo 88ooooo
//  88    88 88    88 88~~~88 88   88    88    88`8b   88~~~~~ 88~~~~~
//  `8P  d8' 88b  d88 88   88 88  .8D    88    88 `88. 88.     88.
//   `Y88'Y8 ~Y8888P' YP   YP Y8888D'    YP    88   YD Y88888P Y88888P
//
// These headers are created by the *basic* style on https://www.messletters.com/en/big-text/.

/// A data structure for storing and accessing data in 2d space.
///
/// For historical context, other implementations, and potential uses of a
/// quadtree, see the [quadtree](https://en.wikipedia.org/wiki/Quadtree)
/// article on Wikipedia.
///
/// ## Parameterization
///
/// `Quadtree<U, V>` is parameterized over
///  - `U`, the type of the coordinate, and
///  - `V`, the value being stored.
///
/// `U` must implement `num::PrimInt` and a set of arithmetic operations necessary for coordinate
/// insertion and comparison. `U` must also implement `std::default` for [`derive_builder`]
/// semantics.
///
/// ## Strictness
///
/// Some methods ([`.query()`], [`.modify()`], and [`.delete()`]) have strict variants. While the
/// default behavior is for any operation to apply to all regions which _intersect_ some
/// operational region, the strict behavior is for the operation to apply only to those regions
/// which are _totally contained by_ the operational region.
///
/// [`derive_builder`]: https://docs.rs/derive_builder/0.7.0/derive_builder/
/// [`.query()`]: #method.query
/// [`.modify()`]: #method.modify
/// [`.delete()`]: #method.delete
// TODO(ambuc): Implement `.delete_by(anchor, dimensions, fn)`: `.retain()` is the inverse.
// TODO(ambuc): Implement `FromIterator<(K, V)>` for `Quadtree`.
#[derive(Debug, PartialEq, Eq)]
pub struct Quadtree<U, V>
where
    U: PrimInt + Default,
{
    inner: QTInner<U>,
    store: StoreType<U, V>,
}

impl<U, V> Quadtree<U, V>
where
    U: PrimInt + Default,
{
    // pub

    /// Creates a new, empty quadtree with some depth.
    /// A quadtree with depth `n` will accept coordinates in the range `[0, 2^n]`.
    /// ```
    /// use quadtree_rs::{point::Point, Quadtree};
    ///
    /// let qt = Quadtree::<u32, u8>::new(/*depth=*/ 2);
    ///
    /// // The anchor of a rectangular region is its top-left coordinate.
    /// // By default, quadtrees are anchored at (0, 0).
    /// assert_eq!(qt.anchor(), Point {x: 0, y: 0});
    /// assert_eq!(qt.depth(), 2);
    /// assert_eq!(qt.width(), 4);
    /// assert_eq!(qt.height(), 4);
    /// ```
    pub fn new(depth: usize) -> Self {
        Self::new_with_anchor(
            point::Point {
                x: U::zero(),
                y: U::zero(),
            },
            depth,
        )
    }

    /// Creates a new, empty quadtree with some depth and an explicit anchor.
    ///
    /// The anchor of a rectangular region is its upper-left coordinate. The
    /// anchor argument is of type [`point::Point`], and can either be
    /// explicit (`Point {x: 2, y: 4}`) or implicit (`(2, 4).into()`).
    ///
    /// [`point::Point`]: point/struct.Point.html
    /// ```
    /// use quadtree_rs::{point::Point, Quadtree};
    ///
    /// let anchor = Point {x: 2, y: 4};
    /// let depth = 3_usize;
    /// let qt = Quadtree::<u32, u8>::new_with_anchor(anchor, depth);
    ///
    /// assert_eq!(qt.depth(), 3);
    /// assert_eq!(qt.anchor(), Point {x: 2, y: 4});
    /// assert_eq!(qt.width(), 8);
    /// assert_eq!(qt.height(), 8);
    /// ```
    pub fn new_with_anchor(anchor: point::Point<U>, depth: usize) -> Self {
        Self {
            inner: QTInner::new(anchor, depth),
            store: HashMap::new(),
        }
    }

    /// The top-left corner (anchor) of the region which this quadtree represents.
    pub fn anchor(&self) -> point::Point<U> {
        self.inner.region().anchor()
    }

    /// The width of the region which this quadtree represents.
    pub fn width(&self) -> usize {
        self.inner.region().width().to_usize().unwrap()
    }

    /// The height of the region which this quadtree represents.
    pub fn height(&self) -> usize {
        self.inner.region().height().to_usize().unwrap()
    }

    /// The depth of the quadtree.
    pub fn depth(&self) -> usize {
        self.inner.depth()
    }

    /// The number of elements in the quadtree.
    pub fn len(&self) -> usize {
        self.store.len()
    }

    /// Whether or not the quadtree is empty.
    pub fn is_empty(&self) -> bool {
        self.store.is_empty()
    }

    /// Whether or not some trial region could fit in the region which this quadtree represents.
    pub fn contains(&self, area: Area<U>) -> bool {
        self.inner.region().contains(area)
    }

    /// Associate some value with a region in the quadtree.
    ///
    /// If insertion is successful, returns a unique handle to the value.
    ///
    /// If the region is too large for, or doesn't overlap with, the region which this quadtree
    /// represents, returns `None`.
    /// ```
    /// use quadtree_rs::{area::AreaBuilder, point::Point, Quadtree};
    ///
    /// let mut qt = Quadtree::<u32, i8>::new(8);
    ///
    /// let region = AreaBuilder::default()
    ///     .anchor(Point {x: 4, y: 5})
    ///     .dimensions((2,3))
    ///     .build().unwrap();
    ///
    /// let handle_a_1 = qt.insert(region, 5).unwrap();
    /// let handle_a_2 = qt.insert(region, 5).unwrap();
    ///
    /// // Even though we inserted 5 at the same point in the quadtree, the
    /// // two handles returned were not the same.
    /// assert_ne!(handle_a_1, handle_a_2);
    /// ```
    pub fn insert(&mut self, region: Area<U>, val: V) -> Option<u64> {
        if self.contains(region) {
            return Some(
                self.inner
                    .insert_val_at_region(region, val, &mut self.store),
            );
        }
        None
    }

    /// Alias for [`.insert()`] which expects a [`Point`] instead of an [`Area`].
    ///
    /// (An [`Area`] is really just a [`Point`] with dimensions `(1, 1)`, so
    /// the point still has to fit within the region.)
    ///
    /// ```
    /// use quadtree_rs::{point::Point, Quadtree};
    ///
    /// let mut qt = Quadtree::<u32, i8>::new(2);
    ///
    /// assert!(qt.insert_pt(Point { x: 1, y: 2 }, 5_i8).is_some());
    /// ```
    ///
    /// [`.insert()`]: #method.insert
    /// [`Area`]: area/struct.Area.html
    /// [`Point`]: point/struct.Point.html
    pub fn insert_pt(&mut self, point: Point<U>, val: V) -> Option<u64> {
        if let Ok(area) = AreaBuilder::default().anchor(point).build() {
            return self.insert(area, val);
        }
        None
    }

    /// Given the handle from an [`.insert()`] operation, provides read-only
    /// access to the associated [`Entry<U, V>`] struct.
    ///
    /// Handles are unique and never re-used, so lookup of a handle to a now-deleted entry can
    /// fail and return `None`.
    ///
    /// ```
    /// use quadtree_rs::{area::AreaBuilder, point::Point, Quadtree};
    ///
    /// let mut qt = Quadtree::<u32, f32>::new(4);
    ///
    /// let region = AreaBuilder::default()
    ///     .anchor(Point {x: 0, y: 1})
    ///     .dimensions((2, 3))
    ///     .build().unwrap();
    /// let handle = qt.insert(region, 9.87).unwrap();
    ///
    /// let entry = qt.get(handle).unwrap();
    /// assert_eq!(entry.value_ref(), &9.87);
    /// ```
    ///
    /// [`.insert()`]: #method.insert
    /// [`Entry<U, V>`]: entry/struct.Entry.html
    pub fn get(&self, handle: u64) -> Option<&Entry<U, V>> {
        self.store.get(&handle)
    }

    /// A mutable variant of [`.get()`] which provides mutable access to the
    /// associated [`Entry<U, V>`] struct.
    ///
    /// ```
    /// use quadtree_rs::{area::AreaBuilder, point::Point, Quadtree};
    ///
    /// let mut qt = Quadtree::<u32, f32>::new(4);
    ///
    /// let region = AreaBuilder::default()
    ///     .anchor(Point {x: 0, y: 1})
    ///     .dimensions((2, 3))
    ///     .build().unwrap();
    /// let handle: u64 = qt.insert(region, 9.87).unwrap();
    ///
    /// if let Some(entry) = qt.get_mut(handle) {
    ///   *entry.value_mut() += 1.0;
    /// }
    ///
    /// assert_eq!(qt.get(handle).unwrap().value_ref(), &10.87);
    ///
    /// ```
    ///
    /// [`.get()`]: #method.get
    /// [`Entry<U, V>`]: entry/struct.Entry.html
    pub fn get_mut(&mut self, handle: u64) -> Option<&mut Entry<U, V>> {
        self.store.get_mut(&handle)
    }

    /// Returns an iterator over [`&Entry<U, V>`] structs representing values
    /// within the query region.
    /// ```
    /// use quadtree_rs::{area::AreaBuilder, Quadtree};
    ///
    /// //   0123456
    /// // 0 ░░░░░░░
    /// // 1 ░░▒▒▒░░    (2,1)->3x2
    /// // 2 ░░▒▒▒░░
    /// // 3 ░░░░░░░
    /// // 4 ░▒▒▒░░░    (1,4)->3x1
    /// // 5 ░░░░░░░
    /// let mut qt = Quadtree::<u32, char>::new(4);
    ///
    /// let region_a = AreaBuilder::default()
    ///     .anchor((2, 1).into())
    ///     .dimensions((3, 2))
    ///     .build().unwrap();
    /// qt.insert(region_a, 'a');
    ///
    /// let region_b = AreaBuilder::default()
    ///     .anchor((1, 4).into())
    ///     .dimensions((3, 1))
    ///     .build().unwrap();
    /// qt.insert(region_b, 'b');
    ///
    /// //   0123456
    /// // 0 ░░░░░░░
    /// // 1 ░░▓▒▒░░  <-- Query over the region
    /// // 2 ░░▒▒▒░░      (2,1)->1x1
    /// // 3 ░░░░░░░
    /// // 4 ░▒▒▒░░░
    /// // 5 ░░░░░░░
    /// let region_c = AreaBuilder::default()
    ///     .anchor((2, 1).into()).build().unwrap();
    /// let mut query_a = qt.query(region_c);
    ///
    /// // We can use the Entry API to destructure the result.
    /// let entry = query_a.next().unwrap();
    /// assert_eq!(entry.area().height(), 2);
    /// assert_eq!(entry.value_ref(), &'a');
    ///
    /// // But that was the only result.
    /// assert!(query_a.next().is_none());
    ///
    /// //   0123456
    /// // 0 ░░░░░░░
    /// // 1 ░▒▓▓▓▒░  <-- query over the region
    /// // 2 ░▒▓▓▓▒░      (0,0)->6x6.
    /// // 3 ░▒▒▒▒▒░
    /// // 4 ░▓▓▓▒▒░
    /// // 5 ░░░░░░░
    /// let region_d = AreaBuilder::default()
    ///     .anchor((1, 1).into())
    ///     .dimensions((4, 4))
    ///     .build().unwrap();
    /// let query_b = qt.query(region_d);
    ///
    /// // It's unspecified what order the regions should
    /// // return in, but there will be two of them.
    /// assert_eq!(query_b.count(), 2);
    /// ```
    ///
    /// [`&Entry<U, V>`]: entry/struct.Entry.html
    /// [`.query()`]: #method.query
    // TODO(ambuc): Settle on a stable return order to avoid breaking callers.
    pub fn query(&self, area: Area<U>) -> Query<U, V> {
        Query::new(area, &self.inner, &self.store, Traversal::Overlapping)
    }

    /// A strict variant of [`.query()`].
    ///
    /// [`.query()`]: #method.query
    pub fn query_strict(&self, area: Area<U>) -> Query<U, V> {
        Query::new(area, &self.inner, &self.store, Traversal::Strict)
    }

    /// Accepts a modification lambda and applies it to all elements in the
    /// quadtree which intersecting the described region.
    ///
    /// ```
    /// use quadtree_rs::{area::AreaBuilder, Quadtree};
    ///
    /// let mut qt = Quadtree::<u8, bool>::new(3);
    ///
    /// let region_a = AreaBuilder::default()
    ///     .anchor((0, 0).into())
    ///     .build().unwrap();
    /// let handle = qt.insert(region_a, true).unwrap();
    ///
    /// // Run a modification lambda over all values in region_a...
    /// qt.modify(region_a, |i| *i = false);
    ///
    /// // ...and verify that the value was applied.
    /// assert_eq!(qt.get(handle).unwrap().value_ref(), &false);
    /// ```
    pub fn modify<F>(&mut self, area: Area<U>, f: F)
    where
        F: Fn(&mut V) + Copy,
    {
        self.modify_region(|a| a.intersects(area), f);
    }

    /// A strict variant of [`.modify()`].
    ///
    /// [`.modify()`]: #method.modify
    pub fn modify_strict<F>(&mut self, area: Area<U>, f: F)
    where
        F: Fn(&mut V) + Copy,
    {
        self.modify_region(|a| area.contains(a), f);
    }

    /// Alias for [`.modify()`] which runs over the entire
    /// quadtree.
    ///
    /// [`.modify()`]: #method.modify
    pub fn modify_all<F>(&mut self, f: F)
    where
        F: Fn(&mut V) + Copy,
    {
        for entry in self.store.values_mut() {
            f(&mut entry.value_mut());
        }
    }

    /// Resets the quadtree to a totally empty state.
    pub fn reset(&mut self) {
        self.store.clear();
        self.inner.reset();
    }

    /// Deletes all value associations which overlap a region in the tree.
    ///
    /// Along the way, consumed [`Entry<U, V>`] entries are collected and returned in an iterator
    /// [`IntoIter<U, V>`].
    /// ```
    /// use quadtree_rs::{area::AreaBuilder, Quadtree};
    ///
    /// let mut qt = Quadtree::<u32, f64>::new(4);
    ///
    /// let region_a = AreaBuilder::default()
    ///     .anchor((0, 0).into())
    ///     .dimensions((2, 2))
    ///     .build().unwrap();
    /// qt.insert(region_a, 1.23);
    ///
    /// let region_b = AreaBuilder::default()
    ///     .anchor((1, 1).into())
    ///     .dimensions((3, 2))
    ///     .build().unwrap();
    /// qt.insert(region_b, 4.56);
    ///
    /// //   0123
    /// // 0 ░░
    /// // 1 ░▓╳░  <-- ╳ is the deletion region
    /// // 2  ░░░
    ///
    /// let region_c = AreaBuilder::default()
    ///     .anchor((2, 1).into()).build().unwrap();
    /// let mut returned_entries = qt.delete(region_c);
    ///
    /// // We've removed one object from the quadtree.
    /// assert_eq!(returned_entries.next().unwrap().value_ref(),
    ///            &4.56);
    ///
    /// // And left one behind.
    /// assert_eq!(qt.len(), 1);
    /// ```
    ///
    /// [`IntoIter<U, V>`]: iter/struct.IntoIter.html
    /// [`Entry<U, V>`]: entry/struct.Entry.html
    /// [`.delete()`]: #method.delete
    pub fn delete(&mut self, area: Area<U>) -> IntoIter<U, V> {
        self.delete_handles_and_return(self.query(area).map(|e| e.handle()).collect())
    }

    /// A strict variant of [`.delete()`].
    ///
    /// [`.delete()`]: #method.delete
    pub fn delete_strict(&mut self, area: Area<U>) -> IntoIter<U, V> {
        self.delete_handles_and_return(self.query_strict(area).map(|e| e.handle()).collect())
    }

    #[allow(clippy::needless_pass_by_value)]
    fn delete_handles_and_return(&mut self, handles: HashSet<u64>) -> IntoIter<U, V> {
        let error: &'static str = "I tried to look up an handle in the store which I found in the tree, but it wasn't there!";

        let mut entries: Vec<Entry<U, V>> = vec![];

        handles.iter().for_each(|u| {
            // We were just passed a hashset of handles taken from this quadtree, so it is safe to
            // assume they all still exist.
            entries.push(self.store.remove(u).expect(&error));
        });

        IntoIter { entries }
    }

    /// Given an handle, deletes a single item from the
    /// Quadtree. If that handle was found,
    /// `delete_by_handle()` returns an `Entry<U, V>`
    /// containing its former region and value. Otherwise,
    /// returns `None`.
    pub fn delete_by_handle(&mut self, handle: u64) -> Option<Entry<U, V>> {
        // Pop the Entry<U, V> out of the @store,
        if let Some(entry) = self.store.remove(&handle) {
            // Use the now-known region to descend into the tree efficiently,
            self.inner.delete_by_handle(handle, entry.area());
            // And return the Entry.
            return Some(entry);
        }
        // If the handle wasn't in the @store, we don't need to perform a descent.
        None
    }

    // TODO(ambuc): Test this fn.
    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all items such that `f(&mut v)` returns `false`.
    pub fn retain<F>(&mut self, mut f: F) -> IntoIter<U, V>
    where
        F: FnMut(&mut V) -> bool,
        U: Hash,
    {
        // TODO(ambuc): I think this is technically correct but it seems to be interweaving three
        // routines. Is there a way to simplify this?
        let mut doomed: HashSet<(u64, Area<U>)> = HashSet::new();
        for (handle, entry) in &mut self.store {
            if f(entry.value_mut()) {
                doomed.insert((*handle, entry.area()));
            }
        }
        // TODO(ambuc): There is an optimization here to do one traversal with many matches, over
        // many traversals i.e. one per match.
        let mut entries: Vec<Entry<U, V>> = vec![];
        for (handle, region) in doomed {
            entries.push(self.store.remove(&handle).unwrap());
            self.inner.delete_by_handle(handle, region);
        }

        IntoIter { entries }
    }
    // TODO(ambuc): retain_within

    /// Returns an iterator ([`Iter<U, V>`]) over all [`&'a Entry<U, V>`]
    /// region/value associations in the Quadtree.
    ///
    /// [`Iter<U, V>`]: iter/struct.Iter.html
    /// [`&'a Entry<U, V>`]: entry/struct.Entry.html
    pub fn iter(&self) -> Iter<U, V> {
        Iter::new(&self.inner, &self.store)
    }

    /// Returns an iterator ([`Regions<U, V>`]) over all [`Area<U>`] regions
    /// in the Quadtree.
    ///
    /// [`Regions<U, V>`]: iter/struct.Regions.html
    /// [`Area<U>`]: area/struct.Area.html
    pub fn regions(&self) -> Regions<U, V> {
        Regions {
            inner: Iter::new(&self.inner, &self.store),
        }
    }

    /// Returns an iterator ([`Values<U, V>`]) over all `&'a V` values in the
    /// Quadtree.
    ///
    /// [`Values<U, V>`]: iter/struct.Values.html
    pub fn values(&self) -> Values<U, V> {
        Values {
            inner: Iter::new(&self.inner, &self.store),
        }
    }

    // fn

    fn modify_region<F, M>(&mut self, filter: F, modify: M)
    where
        F: Fn(Area<U>) -> bool,
        M: Fn(&mut V) + Copy,
    {
        let relevant_handles: Vec<u64> = HandleIter::new(&self.inner).collect();
        for i in relevant_handles {
            if let Some(entry) = self.store.get_mut(&i) {
                if filter(entry.area()) {
                    modify(&mut entry.value_mut());
                }
            }
        }
    }
}

/// `Extend<((U, U), V)>` will silently drop values whose coordinates do not fit in the region
/// represented by the Quadtree. It is the responsibility of the callsite to ensure these points
/// fit.
impl<U, V> Extend<(point::Type<U>, V)> for Quadtree<U, V>
where
    U: PrimInt + Default,
{
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = (point::Type<U>, V)>,
    {
        for ((x, y), val) in iter {
            // Ignore errors.
            self.insert(
                AreaBuilder::default()
                    .anchor(point::Point { x, y })
                    .build()
                    .unwrap(),
                val,
            );
        }
    }
}

// Immutable iterator for the Quadtree, returning by-reference.
impl<'a, U, V> IntoIterator for &'a Quadtree<U, V>
where
    U: PrimInt + Default,
{
    type Item = &'a Entry<U, V>;
    type IntoIter = Iter<'a, U, V>;

    fn into_iter(self) -> Iter<'a, U, V> {
        Iter::new(&self.inner, &self.store)
    }
}

impl<U, V> IntoIterator for Quadtree<U, V>
where
    U: PrimInt + Default,
{
    type Item = Entry<U, V>;
    type IntoIter = IntoIter<U, V>;

    fn into_iter(self) -> IntoIter<U, V> {
        IntoIter {
            entries: self
                .store
                .into_iter()
                .map(|(_handle, entry)| entry)
                .collect(),
        }
    }
}