1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
use num_traits::ToPrimitive;
use std::default::Default;
use std::iter::{FromIterator, IntoIterator};

use {crate::Commute, crate::Partial};

/// Compute the exact median on a stream of data.
///
/// (This has time complexity `O(nlogn)` and space complexity `O(n)`.)
pub fn median<I>(it: I) -> Option<f64>
where
    I: Iterator,
    <I as Iterator>::Item: PartialOrd + ToPrimitive,
{
    it.collect::<Unsorted<_>>().median()
}

/// Compute the exact 1-, 2-, and 3-quartiles (Q1, Q2 a.k.a. median, and Q3) on a stream of data.
///
/// (This has time complexity `O(nlogn)` and space complexity `O(n)`.)
pub fn quartiles<I>(it: I) -> Option<(f64, f64, f64)>
where
    I: Iterator,
    <I as Iterator>::Item: PartialOrd + ToPrimitive,
{
    it.collect::<Unsorted<_>>().quartiles()
}

/// Compute the exact mode on a stream of data.
///
/// (This has time complexity `O(nlogn)` and space complexity `O(n)`.)
///
/// If the data does not have a mode, then `None` is returned.
pub fn mode<T, I>(it: I) -> Option<T>
where
    T: PartialOrd + Clone,
    I: Iterator<Item = T>,
{
    it.collect::<Unsorted<T>>().mode()
}

/// Compute the modes on a stream of data.
///
/// If there is a single mode, then only that value is returned in the `Vec`
/// however, if there are multiple values tied for occurring the most amount of times
/// those values are returned.
///
/// ## Example
/// ```
/// use stats;
///
/// let vals = vec![1, 1, 2, 2, 3];
///
/// assert_eq!(stats::modes(vals.into_iter()), (vec![1, 2], 2));
/// ```
/// This has time complexity `O(n)`
///
/// If the data does not have a mode, then an empty `Vec` is returned.
pub fn modes<T, I>(it: I) -> (Vec<T>, u32)
where
    T: PartialOrd + Clone,
    I: Iterator<Item = T>,
{
    it.collect::<Unsorted<T>>().modes()
}

/// Compute the antimodes on a stream of data.
///
/// Antimode is the least frequent non-zero score.
///
/// If there is a single antimode, then only that value is returned in the `Vec`
/// however, if there are multiple values tied for occurring the least amount of times
/// those values are returned.
///
/// Only the first 10 antimodes are returned to prevent returning the whole set
/// when cardinality = number of records (i.e. all unique values).
///
/// ## Example
/// ```
/// use stats;
///
/// let vals = vec![1, 1, 2, 2, 3];
///
/// assert_eq!(stats::antimodes(vals.into_iter()), (vec![3], 1, 1));
/// ```
/// This has time complexity `O(n)`
///
/// If the data does not have an antimode, then an empty `Vec` is returned.
pub fn antimodes<T, I>(it: I) -> (Vec<T>, usize, u32)
where
    T: PartialOrd + Clone,
    I: Iterator<Item = T>,
{
    let (antimodes_result, antimodes_count, antimodes_occurences) =
        it.collect::<Unsorted<T>>().antimodes();
    let antimodes_preview = if antimodes_count > 10 {
        antimodes_result[..10].to_vec()
    } else {
        antimodes_result
    };
    (antimodes_preview, antimodes_count, antimodes_occurences)
}

fn median_on_sorted<T>(data: &[T]) -> Option<f64>
where
    T: PartialOrd + ToPrimitive,
{
    Some(match data.len() {
        0 => return None,
        1 => unsafe { data.get_unchecked(0).to_f64().unwrap_unchecked() },
        len if len % 2 == 0 => unsafe {
            let v1 = data
                .get_unchecked((len / 2) - 1)
                .to_f64()
                .unwrap_unchecked();
            let v2 = data.get_unchecked(len / 2).to_f64().unwrap_unchecked();
            (v1 + v2) / 2.0
        },
        len => unsafe { data.get_unchecked(len / 2).to_f64().unwrap_unchecked() },
    })
}

fn quartiles_on_sorted<T>(data: &[T]) -> Option<(f64, f64, f64)>
where
    T: PartialOrd + ToPrimitive,
{
    Some(match data.len() {
        0..=2 => return None,
        3 => unsafe {
            (
                data.get_unchecked(0).to_f64().unwrap_unchecked(),
                data.get_unchecked(1).to_f64().unwrap_unchecked(),
                data.get_unchecked(2).to_f64().unwrap_unchecked(),
            )
        },
        len => {
            let r = len % 4;
            let k = (len - r) / 4;
            match r {
                // Let data = {x_i}_{i=0..4k} where k is positive integer.
                // Median q2 = (x_{2k-1} + x_{2k}) / 2.
                // If we divide data into two parts {x_i < q2} as L and
                // {x_i > q2} as R, #L == #R == 2k holds true. Thus,
                // q1 = (x_{k-1} + x_{k}) / 2 and q3 = (x_{3k-1} + x_{3k}) / 2.
                0 => unsafe {
                    let (q1_l, q1_r, q2_l, q2_r, q3_l, q3_r) = (
                        data.get_unchecked(k - 1).to_f64().unwrap_unchecked(),
                        data.get_unchecked(k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(2 * k - 1).to_f64().unwrap_unchecked(),
                        data.get_unchecked(2 * k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(3 * k - 1).to_f64().unwrap_unchecked(),
                        data.get_unchecked(3 * k).to_f64().unwrap_unchecked(),
                    );

                    ((q1_l + q1_r) / 2., (q2_l + q2_r) / 2., (q3_l + q3_r) / 2.)
                },
                // Let data = {x_i}_{i=0..4k+1} where k is positive integer.
                // Median q2 = x_{2k}.
                // If we divide data other than q2 into two parts {x_i < q2}
                // as L and {x_i > q2} as R, #L == #R == 2k holds true. Thus,
                // q1 = (x_{k-1} + x_{k}) / 2 and q3 = (x_{3k} + x_{3k+1}) / 2.
                1 => unsafe {
                    let (q1_l, q1_r, q2, q3_l, q3_r) = (
                        data.get_unchecked(k - 1).to_f64().unwrap_unchecked(),
                        data.get_unchecked(k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(2 * k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(3 * k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(3 * k + 1).to_f64().unwrap_unchecked(),
                    );
                    ((q1_l + q1_r) / 2., q2, (q3_l + q3_r) / 2.)
                },
                // Let data = {x_i}_{i=0..4k+2} where k is positive integer.
                // Median q2 = (x_{(2k+1)-1} + x_{2k+1}) / 2.
                // If we divide data into two parts {x_i < q2} as L and
                // {x_i > q2} as R, it's true that #L == #R == 2k+1.
                // Thus, q1 = x_{k} and q3 = x_{3k+1}.
                2 => unsafe {
                    let (q1, q2_l, q2_r, q3) = (
                        data.get_unchecked(k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(2 * k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(2 * k + 1).to_f64().unwrap_unchecked(),
                        data.get_unchecked(3 * k + 1).to_f64().unwrap_unchecked(),
                    );
                    (q1, (q2_l + q2_r) / 2., q3)
                },
                // Let data = {x_i}_{i=0..4k+3} where k is positive integer.
                // Median q2 = x_{2k+1}.
                // If we divide data other than q2 into two parts {x_i < q2}
                // as L and {x_i > q2} as R, #L == #R == 2k+1 holds true.
                // Thus, q1 = x_{k} and q3 = x_{3k+2}.
                _ => unsafe {
                    let (q1, q2, q3) = (
                        data.get_unchecked(k).to_f64().unwrap_unchecked(),
                        data.get_unchecked(2 * k + 1).to_f64().unwrap_unchecked(),
                        data.get_unchecked(3 * k + 2).to_f64().unwrap_unchecked(),
                    );
                    (q1, q2, q3)
                },
            }
        }
    })
}

fn mode_on_sorted<T, I>(it: I) -> Option<T>
where
    T: PartialOrd,
    I: Iterator<Item = T>,
{
    // This approach to computing the mode works very nicely when the
    // number of samples is large and is close to its cardinality.
    // In other cases, a hashmap would be much better.
    // But really, how can we know this when given an arbitrary stream?
    // Might just switch to a hashmap to track frequencies. That would also
    // be generally useful for discovering the cardinality of a sample.
    let (mut mode, mut next) = (None, None);
    let (mut mode_count, mut next_count) = (0usize, 0usize);
    for x in it {
        if mode.as_ref().map_or(false, |y| y == &x) {
            mode_count += 1;
        } else if next.as_ref().map_or(false, |y| y == &x) {
            next_count += 1;
        } else {
            next = Some(x);
            next_count = 0;
        }

        #[allow(clippy::comparison_chain)]
        if next_count > mode_count {
            mode = next;
            mode_count = next_count;
            next = None;
            next_count = 0;
        } else if next_count == mode_count {
            mode = None;
            mode_count = 0usize;
        }
    }
    mode
}

fn modes_on_sorted<T, I>(it: I, size: usize) -> (Vec<T>, u32)
where
    T: PartialOrd,
    I: Iterator<Item = T>,
{
    let mut highest_mode = 0_u32;
    // to do some prealloc without taking up to much memory
    let mut modes: Vec<u32> = Vec::with_capacity(usize::min(size / 3, 10_000));
    let mut values = Vec::with_capacity(usize::min(size / 3, 10_000));
    let mut count = 0;
    for x in it {
        if values.is_empty() {
            values.push(x);
            modes.push(1);
            continue;
        }
        if x == values[count] {
            modes[count] += 1;
            if highest_mode < modes[count] {
                highest_mode = modes[count];
            }
        } else {
            values.push(x);
            modes.push(1);
            count += 1;
        }
    }
    let modes_result = modes
        .into_iter()
        .zip(values)
        .filter(|(cnt, _val)| *cnt == highest_mode && highest_mode > 1)
        .map(|(_, val)| val)
        .collect();

    (modes_result, highest_mode)
}

fn antimodes_on_sorted<T, I>(it: I, size: usize) -> (Vec<T>, u32)
where
    T: PartialOrd,
    I: Iterator<Item = T>,
{
    let mut lowest_mode = u32::MAX;
    // to do some prealloc, without taking up too much memory
    let mut modes: Vec<u32> = Vec::with_capacity(usize::min(size / 3, 10_000));
    let mut values = Vec::with_capacity(usize::min(size / 3, 10_000));
    let mut count = 0;
    for x in it {
        if values.is_empty() {
            values.push(x);
            modes.push(1);
            continue;
        }
        if x == values[count] {
            modes[count] += 1;
        } else {
            values.push(x);
            modes.push(1);
            if lowest_mode > modes[count] {
                lowest_mode = modes[count];
            }
            count += 1;
        }
    }
    if count > 0 && lowest_mode > modes[count] {
        lowest_mode = modes[count];
    }
    let antimodes_result = modes
        .into_iter()
        .zip(values)
        .filter(|(cnt, _val)| *cnt == lowest_mode && lowest_mode < u32::MAX)
        .map(|(_, val)| val)
        .collect();

    if lowest_mode == u32::MAX {
        lowest_mode = 0;
    }
    (antimodes_result, lowest_mode)
}

/// A commutative data structure for lazily sorted sequences of data.
///
/// The sort does not occur until statistics need to be computed.
///
/// Note that this works on types that do not define a total ordering like
/// `f32` and `f64`. When an ordering is not defined, an arbitrary order
/// is returned.
#[derive(Clone)]
pub struct Unsorted<T> {
    data: Vec<Partial<T>>,
    sorted: bool,
}

impl<T: PartialOrd> Unsorted<T> {
    /// Create initial empty state.
    #[inline]
    #[must_use]
    pub fn new() -> Unsorted<T> {
        Default::default()
    }

    /// Add a new element to the set.
    #[inline]
    pub fn add(&mut self, v: T) {
        self.dirtied();
        self.data.push(Partial(v));
    }

    /// Return the number of data points.
    #[inline]
    #[must_use]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Return true if empty.
    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }

    #[inline]
    fn sort(&mut self) {
        if !self.sorted {
            self.data.sort_unstable();
            self.sorted = true;
        }
    }

    #[inline]
    fn dirtied(&mut self) {
        self.sorted = false;
    }
}

impl<T: PartialOrd + Eq + Clone> Unsorted<T> {
    #[inline]
    pub fn cardinality(&mut self) -> usize {
        self.sort();
        let mut set = self.data.clone();
        set.dedup();
        set.len()
    }
}

impl<T: PartialOrd + Clone> Unsorted<T> {
    /// Returns the mode of the data.
    #[inline]
    pub fn mode(&mut self) -> Option<T> {
        self.sort();
        mode_on_sorted(self.data.iter()).map(|p| p.0.clone())
    }

    /// Returns the modes of the data.
    #[inline]
    pub fn modes(&mut self) -> (Vec<T>, u32) {
        self.sort();
        let (modes_vec, occurrences) = modes_on_sorted(self.data.iter(), self.len());
        let modes_result = modes_vec.into_iter().map(|p| p.0.clone()).collect();
        (modes_result, occurrences)
    }

    /// Returns the antimodes of the data.
    #[inline]
    pub fn antimodes(&mut self) -> (Vec<T>, usize, u32) {
        self.sort();
        let (antimodes_vec, occurences) = antimodes_on_sorted(self.data.iter(), self.len());
        let antimodes_result: Vec<T> = antimodes_vec.into_iter().map(|p| p.0.clone()).collect();
        let antimodes_count = antimodes_result.len();
        (antimodes_result, antimodes_count, occurences)
    }
}

impl<T: PartialOrd + ToPrimitive> Unsorted<T> {
    /// Returns the median of the data.
    #[inline]
    pub fn median(&mut self) -> Option<f64> {
        self.sort();
        median_on_sorted(&self.data)
    }
}

impl<T: PartialOrd + ToPrimitive> Unsorted<T> {
    /// Returns the quartiles of the data.
    #[inline]
    pub fn quartiles(&mut self) -> Option<(f64, f64, f64)> {
        self.sort();
        quartiles_on_sorted(&self.data)
    }
}

impl<T: PartialOrd> Commute for Unsorted<T> {
    #[inline]
    fn merge(&mut self, v: Unsorted<T>) {
        self.dirtied();
        self.data.extend(v.data.into_iter());
    }
}

impl<T: PartialOrd> Default for Unsorted<T> {
    #[inline]
    fn default() -> Unsorted<T> {
        Unsorted {
            data: Vec::with_capacity(1000),
            sorted: true,
        }
    }
}

impl<T: PartialOrd> FromIterator<T> for Unsorted<T> {
    #[inline]
    fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Unsorted<T> {
        let mut v = Unsorted::new();
        v.extend(it);
        v
    }
}

impl<T: PartialOrd> Extend<T> for Unsorted<T> {
    #[inline]
    fn extend<I: IntoIterator<Item = T>>(&mut self, it: I) {
        self.dirtied();
        self.data.extend(it.into_iter().map(Partial));
    }
}

#[cfg(test)]
mod test {
    use super::{antimodes, median, mode, modes, quartiles};

    #[test]
    fn median_stream() {
        assert_eq!(median(vec![3usize, 5, 7, 9].into_iter()), Some(6.0));
        assert_eq!(median(vec![3usize, 5, 7].into_iter()), Some(5.0));
    }

    #[test]
    fn mode_stream() {
        assert_eq!(mode(vec![3usize, 5, 7, 9].into_iter()), None);
        assert_eq!(mode(vec![3usize, 3, 3, 3].into_iter()), Some(3));
        assert_eq!(mode(vec![3usize, 3, 3, 4].into_iter()), Some(3));
        assert_eq!(mode(vec![4usize, 3, 3, 3].into_iter()), Some(3));
        assert_eq!(mode(vec![1usize, 1, 2, 3, 3].into_iter()), None);
    }

    #[test]
    fn median_floats() {
        assert_eq!(median(vec![3.0f64, 5.0, 7.0, 9.0].into_iter()), Some(6.0));
        assert_eq!(median(vec![3.0f64, 5.0, 7.0].into_iter()), Some(5.0));
        assert_eq!(median(vec![1.0f64, 2.5, 3.0].into_iter()), Some(2.5));
    }

    #[test]
    fn mode_floats() {
        assert_eq!(mode(vec![3.0f64, 5.0, 7.0, 9.0].into_iter()), None);
        assert_eq!(mode(vec![3.0f64, 3.0, 3.0, 3.0].into_iter()), Some(3.0));
        assert_eq!(mode(vec![3.0f64, 3.0, 3.0, 4.0].into_iter()), Some(3.0));
        assert_eq!(mode(vec![4.0f64, 3.0, 3.0, 3.0].into_iter()), Some(3.0));
        assert_eq!(mode(vec![1.0f64, 1.0, 2.0, 3.0, 3.0].into_iter()), None);
    }

    #[test]
    fn modes_stream() {
        assert_eq!(modes(vec![3usize, 5, 7, 9].into_iter()), (vec![], 0));
        assert_eq!(modes(vec![3usize, 3, 3, 3].into_iter()), (vec![3], 4));
        assert_eq!(modes(vec![3usize, 3, 4, 4].into_iter()), (vec![3, 4], 2));
        assert_eq!(modes(vec![4usize, 3, 3, 3].into_iter()), (vec![3], 3));
        assert_eq!(modes(vec![1usize, 1, 2, 2].into_iter()), (vec![1, 2], 2));
        let vec: Vec<u32> = vec![];
        assert_eq!(modes(vec.into_iter()), (vec![], 0));
    }

    #[test]
    fn modes_floats() {
        assert_eq!(modes(vec![3_f64, 5.0, 7.0, 9.0].into_iter()), (vec![], 0));
        assert_eq!(
            modes(vec![3_f64, 3.0, 3.0, 3.0].into_iter()),
            (vec![3.0], 4)
        );
        assert_eq!(
            modes(vec![3_f64, 3.0, 4.0, 4.0].into_iter()),
            (vec![3.0, 4.0], 2)
        );
        assert_eq!(
            modes(vec![1_f64, 1.0, 2.0, 3.0, 3.0].into_iter()),
            (vec![1.0, 3.0], 2)
        );
    }

    #[test]
    fn antimodes_stream() {
        assert_eq!(
            antimodes(vec![3usize, 5, 7, 9].into_iter()),
            (vec![3, 5, 7, 9], 4, 1)
        );
        assert_eq!(
            antimodes(vec![1usize, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].into_iter()),
            (vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 13, 1)
        );
        assert_eq!(
            antimodes(vec![1usize, 3, 3, 3].into_iter()),
            (vec![1], 1, 1)
        );
        assert_eq!(
            antimodes(vec![3usize, 3, 4, 4].into_iter()),
            (vec![3, 4], 2, 2)
        );
        assert_eq!(
            antimodes(
                vec![
                    3usize, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
                    14, 14, 15, 15
                ]
                .into_iter()
            ),
            (vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 13, 2)
        );
        assert_eq!(
            antimodes(
                vec![
                    3usize, 3, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 4, 4, 5, 5, 6, 6, 7, 7, 13, 13,
                    14, 14, 15, 15
                ]
                .into_iter()
            ),
            (vec![3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 13, 2)
        );
        assert_eq!(
            antimodes(vec![3usize, 3, 3, 4].into_iter()),
            (vec![4], 1, 1)
        );
        assert_eq!(
            antimodes(vec![4usize, 3, 3, 3].into_iter()),
            (vec![4], 1, 1)
        );
        assert_eq!(
            antimodes(vec![1usize, 1, 2, 2].into_iter()),
            (vec![1, 2], 2, 2)
        );
        let vec: Vec<u32> = vec![];
        assert_eq!(antimodes(vec.into_iter()), (vec![], 0, 0));
    }

    #[test]
    fn antimodes_floats() {
        assert_eq!(
            antimodes(vec![3_f64, 5.0, 7.0, 9.0].into_iter()),
            (vec![3.0, 5.0, 7.0, 9.0], 4, 1)
        );
        assert_eq!(
            antimodes(vec![3_f64, 3.0, 3.0, 3.0].into_iter()),
            (vec![], 0, 0)
        );
        assert_eq!(
            antimodes(vec![3_f64, 3.0, 4.0, 4.0].into_iter()),
            (vec![3.0, 4.0], 2, 2)
        );
        assert_eq!(
            antimodes(vec![1_f64, 1.0, 2.0, 3.0, 3.0].into_iter()),
            (vec![2.0], 1, 1)
        );
    }

    #[test]
    fn quartiles_stream() {
        assert_eq!(
            quartiles(vec![3usize, 5, 7].into_iter()),
            Some((3., 5., 7.))
        );
        assert_eq!(
            quartiles(vec![3usize, 5, 7, 9].into_iter()),
            Some((4., 6., 8.))
        );
        assert_eq!(
            quartiles(vec![1usize, 2, 7, 11].into_iter()),
            Some((1.5, 4.5, 9.))
        );
        assert_eq!(
            quartiles(vec![3usize, 5, 7, 9, 12].into_iter()),
            Some((4., 7., 10.5))
        );
        assert_eq!(
            quartiles(vec![2usize, 2, 3, 8, 10].into_iter()),
            Some((2., 3., 9.))
        );
        assert_eq!(
            quartiles(vec![3usize, 5, 7, 9, 12, 20].into_iter()),
            Some((5., 8., 12.))
        );
        assert_eq!(
            quartiles(vec![0usize, 2, 4, 8, 10, 11].into_iter()),
            Some((2., 6., 10.))
        );
        assert_eq!(
            quartiles(vec![3usize, 5, 7, 9, 12, 20, 21].into_iter()),
            Some((5., 9., 20.))
        );
        assert_eq!(
            quartiles(vec![1usize, 5, 6, 6, 7, 10, 19].into_iter()),
            Some((5., 6., 10.))
        );
    }

    #[test]
    fn quartiles_floats() {
        assert_eq!(
            quartiles(vec![3_f64, 5., 7.].into_iter()),
            Some((3., 5., 7.))
        );
        assert_eq!(
            quartiles(vec![3_f64, 5., 7., 9.].into_iter()),
            Some((4., 6., 8.))
        );
        assert_eq!(
            quartiles(vec![3_f64, 5., 7., 9., 12.].into_iter()),
            Some((4., 7., 10.5))
        );
        assert_eq!(
            quartiles(vec![3_f64, 5., 7., 9., 12., 20.].into_iter()),
            Some((5., 8., 12.))
        );
        assert_eq!(
            quartiles(vec![3_f64, 5., 7., 9., 12., 20., 21.].into_iter()),
            Some((5., 9., 20.))
        );
    }
}