1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
//!
//! qr_code
//!
//! This crate provides a [QrCode](crate::QrCode) encoder and decoder
//!

#![deny(missing_docs)]
#![deny(warnings)]
#![allow(
    clippy::must_use_candidate, // This is just annoying.
    clippy::use_self, // Rust 1.33 doesn't support Self::EnumVariant, let's try again in 1.37.
    clippy::match_like_matches_macro, // MSRV is lower than what's needed for matches!
    clippy::wrong_self_convention, // TODO fix code and remove
)]
#![cfg_attr(feature = "bench", doc(include = "../README.md"))]
// ^ make sure we can test our README.md.
// TODO: Avoid using `feature = "bench"` above.
#![cfg_attr(docsrs, feature(doc_cfg))]
// No `unsafe` please.  If `unsafe` is really needed, then please
// consider encapsulating it in a separate crates.io crate.
#![forbid(unsafe_code)]
// Using `#[bench]`, `test::Bencher`, and `cargo bench` requires opting into the unstable `test`
// feature.  See https://github.com/rust-lang/rust/issues/50297 for more details.  Benchmarks
// features are only available in the nightly versions of the Rust compiler - to keep stable
// builds working we only enable benching behind the "bench" config.  To run the benchmarks
// use: `RUSTFLAGS='--cfg=bench' cargo +nightly bench --all-features`
#![cfg_attr(bench, feature(test))]
#[cfg(bench)]
extern crate test;

// Re-exported dependencies.

#[cfg(feature = "bmp")]
/// Allows to create QR codes images using monocrhomatic bitmaps
pub extern crate bmp_monochrome;

use std::ops::Index;

pub mod bits;
pub mod canvas;
mod cast;
pub mod ec;
pub mod optimize;
mod render;
pub mod types;

#[cfg(feature = "fuzz")]
mod fuzz;
#[cfg(feature = "fuzz")]
pub use crate::fuzz::{split_merge_rt, QrCodeData};

#[cfg(all(feature = "bmp", feature = "decode"))]
pub mod decode;
pub mod structured;

pub use crate::types::{Color, EcLevel, QrResult, Version};

use crate::cast::As;

/// The encoded QR code symbol.
#[derive(Clone, Debug)]
pub struct QrCode {
    content: Vec<Color>,
    version: Version,
    ec_level: EcLevel,
    width: usize,
}

impl QrCode {
    /// Constructs a new QR code which automatically encodes the given data.
    ///
    /// This method uses the "medium" error correction level and automatically
    /// chooses the smallest QR code.
    ///
    ///     use qr_code::QrCode;
    ///
    ///     let code = QrCode::new(b"Some data").unwrap();
    ///
    /// # Errors
    ///
    /// Returns error if the QR code cannot be constructed, e.g. when the data
    /// is too long.
    pub fn new<D: AsRef<[u8]>>(data: D) -> QrResult<Self> {
        Self::with_error_correction_level(data, EcLevel::M)
    }

    /// Constructs a new QR code which automatically encodes the given data at a
    /// specific error correction level.
    ///
    /// This method automatically chooses the smallest QR code.
    ///
    ///     use qr_code::{QrCode, EcLevel};
    ///
    ///     let code = QrCode::with_error_correction_level(b"Some data", EcLevel::H).unwrap();
    ///
    /// # Errors
    ///
    /// Returns error if the QR code cannot be constructed, e.g. when the data
    /// is too long.
    pub fn with_error_correction_level<D: AsRef<[u8]>>(
        data: D,
        ec_level: EcLevel,
    ) -> QrResult<Self> {
        let bits = bits::encode_auto(data.as_ref(), ec_level)?;
        Self::with_bits(bits, ec_level)
    }

    /// Constructs a new QR code for the given version and error correction
    /// level.
    ///
    ///     use qr_code::{QrCode, Version, EcLevel};
    ///
    ///     let code = QrCode::with_version(b"Some data", Version::Normal(5), EcLevel::M).unwrap();
    ///
    /// This method can also be used to generate Micro QR code.
    ///
    ///     use qr_code::{QrCode, Version, EcLevel};
    ///
    ///     let micro_code = QrCode::with_version(b"123", Version::Micro(1), EcLevel::L).unwrap();
    ///
    /// # Errors
    ///
    /// Returns error if the QR code cannot be constructed, e.g. when the data
    /// is too long, or when the version and error correction level are
    /// incompatible.
    pub fn with_version<D: AsRef<[u8]>>(
        data: D,
        version: Version,
        ec_level: EcLevel,
    ) -> QrResult<Self> {
        let mut bits = bits::Bits::new(version);
        bits.push_optimal_data(data.as_ref())?;
        bits.push_terminator(ec_level)?;
        Self::with_bits(bits, ec_level)
    }

    /// Constructs a new QR code with encoded bits.
    ///
    /// Use this method only if there are very special need to manipulate the
    /// raw bits before encoding. Some examples are:
    ///
    /// * Encode data using specific character set with ECI
    /// * Use the FNC1 modes
    /// * Avoid the optimal segmentation algorithm
    ///
    /// See the `Bits` structure for detail.
    ///
    ///     #![allow(unused_must_use)]
    ///
    ///     use qr_code::{QrCode, Version, EcLevel};
    ///     use qr_code::bits::Bits;
    ///
    ///     let mut bits = Bits::new(Version::Normal(1));
    ///     bits.push_eci_designator(9);
    ///     bits.push_byte_data(b"\xca\xfe\xe4\xe9\xea\xe1\xf2 QR");
    ///     bits.push_terminator(EcLevel::L);
    ///     let qrcode = QrCode::with_bits(bits, EcLevel::L);
    ///
    /// # Errors
    ///
    /// Returns error if the QR code cannot be constructed, e.g. when the bits
    /// are too long, or when the version and error correction level are
    /// incompatible.
    pub fn with_bits(bits: bits::Bits, ec_level: EcLevel) -> QrResult<Self> {
        let version = bits.version();
        let data = bits.into_bytes();
        let (encoded_data, ec_data) = ec::construct_codewords(&data, version, ec_level)?;
        let mut canvas = canvas::Canvas::new(version, ec_level);
        canvas.draw_all_functional_patterns();
        canvas.draw_data(&encoded_data, &ec_data);
        let canvas = canvas.apply_best_mask();
        Ok(Self {
            content: canvas.into_colors(),
            version,
            ec_level,
            width: version.width().as_usize(),
        })
    }

    /// Gets the version of this QR code.
    pub fn version(&self) -> Version {
        self.version
    }

    /// Gets the error correction level of this QR code.
    pub fn error_correction_level(&self) -> EcLevel {
        self.ec_level
    }

    /// Gets the number of modules per side, i.e. the width of this QR code.
    ///
    /// The width here does not contain the quiet zone paddings.
    pub fn width(&self) -> usize {
        self.width
    }

    /// Gets the maximum number of allowed erratic modules can be introduced
    /// before the data becomes corrupted. Note that errors should not be
    /// introduced to functional modules.
    pub fn max_allowed_errors(&self) -> usize {
        ec::max_allowed_errors(self.version, self.ec_level).expect("invalid version or ec_level")
    }

    /// Checks whether a module at coordinate (x, y) is a functional module or
    /// not.
    pub fn is_functional(&self, x: usize, y: usize) -> bool {
        let x = x.as_i16();
        let y = y.as_i16();
        canvas::is_functional(self.version, self.version.width(), x, y)
    }

    /// Converts the QR code to a vector of booleans. Each entry represents the
    /// color of the module, with "true" means dark and "false" means light.
    pub fn to_vec(&self) -> Vec<bool> {
        self.content.iter().map(|c| *c != Color::Light).collect()
    }

    /// Returns an iterator over QR code vector of colors.
    pub fn iter(&self) -> QrCodeIterator {
        QrCodeIterator::new(self)
    }

    /// Converts the QR code to a vector of colors.
    pub fn into_colors(self) -> Vec<Color> {
        self.content
    }
}

impl Index<(usize, usize)> for QrCode {
    type Output = Color;

    fn index(&self, (x, y): (usize, usize)) -> &Color {
        let index = y * self.width + x;
        &self.content[index]
    }
}

/// Iterate over QR code data without consuming the QR code struct
pub struct QrCodeIterator<'a> {
    qr_code: &'a QrCode,
    index: usize,
}

impl<'a> QrCodeIterator<'a> {
    fn new(qr_code: &'a QrCode) -> Self {
        let index = 0;
        QrCodeIterator { qr_code, index }
    }
}

impl<'a> Iterator for QrCodeIterator<'a> {
    type Item = bool;
    fn next(&mut self) -> Option<bool> {
        let result = self
            .qr_code
            .content
            .get(self.index)
            .map(|c| c == &Color::Dark);
        self.index += 1;
        result
    }
}

#[cfg(test)]
mod tests {
    use super::{EcLevel, QrCode, Version};
    use crate::types::QrError;
    use std::time::{Duration, Instant};

    #[cfg(all(feature = "bmp", feature = "decode"))]
    #[test]
    fn test_roundtrip() {
        use crate::decode::BmpDecode;
        use bmp_monochrome::Bmp;
        use rand::distributions::Alphanumeric;
        use rand::Rng;
        use std::io::Cursor;

        let rand_string: String = rand::thread_rng()
            .sample_iter(&Alphanumeric)
            .take(30)
            .collect();
        let qr_code = QrCode::new(rand_string.as_bytes()).unwrap();
        let mut cursor = Cursor::new(vec![]);
        qr_code
            .to_bmp()
            .mul(3)
            .unwrap()
            .add_white_border(3)
            .unwrap()
            .write(&mut cursor)
            .unwrap();
        cursor.set_position(0);
        let bmp = Bmp::read(cursor).unwrap();
        let result = bmp.normalize().decode().unwrap();
        let decoded = std::str::from_utf8(&result).unwrap();
        assert_eq!(rand_string, decoded);
    }

    #[test]
    fn test_with_version() {
        let qr_code = QrCode::with_version(b"test", Version::Normal(1), EcLevel::H).unwrap();

        assert_eq!(qr_code.version(), Version::Normal(1));
        assert_eq!(qr_code.error_correction_level(), EcLevel::H);

        // Only a smoke test of `QrCode::max_allowed_errors` - more thorough test coverage is
        // provided by the tests in the `ec.rs` module.
        assert_eq!(qr_code.max_allowed_errors(), 8);
    }

    #[test]
    fn test_equivalence_of_pixel_accessors() {
        let qr_code = QrCode::new(b"test").unwrap();

        let output_via_iter = qr_code.iter().collect::<Vec<_>>();
        let output_via_to_vec = qr_code.to_vec();

        let mut output_via_index = vec![];
        for y in 0..qr_code.width() {
            for x in 0..qr_code.width() {
                output_via_index.push(qr_code[(x, y)].select(true, false));
            }
        }

        assert_eq!(output_via_iter.as_slice(), output_via_to_vec.as_slice());
        assert_eq!(output_via_iter.as_slice(), output_via_index.as_slice());
    }

    #[test]
    fn test_very_large_input() {
        let start = Instant::now();

        let input = {
            // It is important that `data` doesn't decompose into single `Segment`,
            // because this wouldn't sufficiently stress the performance of
            // `Parser::new` or `optimize_segmentation`.  In particular, using
            // `vec![0; TARGET_LEN]` wouldn't be sufficient to demonstrate the
            // problem (at least not at the fairly low 10MB `TARGET_LEN`).
            let stencil = include_bytes!("../test_data/large_base64.in");

            const TARGET_LEN: usize = 10 * 1024 * 1024;
            let data = stencil.repeat(TARGET_LEN / stencil.len() + 1);
            assert!(data.len() >= TARGET_LEN);
            data
        };

        let err = QrCode::new(&*input).unwrap_err();
        assert_eq!(err, QrError::DataTooLong);

        // This assertion is probably the most important part of the test - input
        // that doesn't fit should only take O(1) to reject.
        assert!(start.elapsed() < Duration::from_secs(1));
    }
}

#[cfg(bench)]
pub(crate) mod bench {
    use super::{EcLevel, QrCode};

    #[bench]
    fn bench_qr_code_with_low_ecc(bencher: &mut test::Bencher) {
        bencher.iter(|| {
            let data = include_bytes!("../test_data/large_base64.in");

            // Using `EcLevel::L` because otherwise the input data won't fit and we'll get
            // `DataTooLong` error.
            let qr_code = QrCode::with_error_correction_level(data, EcLevel::L).unwrap();

            // The code below reads all the QR pixels - this is a haphazard attempt to ensure that
            // the compiler won't optimize away generation of the data.
            qr_code.iter().map(|b| if b { 1 } else { 0 }).sum::<usize>()
        });
    }
}