1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
use once_cell::sync::Lazy;
use std::any::TypeId;
use std::cell::UnsafeCell;
use std::collections::HashSet;
use std::marker::PhantomData;
use std::sync::{Condvar, Mutex};

use super::Invariant;

static SINGLETON_CHECK: Lazy<Mutex<HashSet<TypeId>>> = Lazy::new(|| Mutex::new(HashSet::new()));
static SINGLETON_CHECK_CONDVAR: Lazy<Condvar> = Lazy::new(Condvar::new);

/// Borrowing-owner of zero or more [`TCell`](struct.TCell.html)
/// instances.
///
/// See [crate documentation](index.html).
pub struct TCellOwner<Q: 'static> {
    // Allow Send and Sync, and Q is invariant
    typ: PhantomData<Invariant<Q>>,
}

impl<Q: 'static> Drop for TCellOwner<Q> {
    fn drop(&mut self) {
        // Remove the TypeId of Q from the HashSet, indicating that
        // no more instances of TCellOwner<Q> exist.
        SINGLETON_CHECK.lock().unwrap().remove(&TypeId::of::<Q>());

        // Wake up all threads waiting in TCellOwner::wait_for_new()
        // to check if their Q was removed from the HashSet.
        SINGLETON_CHECK_CONDVAR.notify_all();
    }
}

impl<Q: 'static> Default for TCellOwner<Q> {
    fn default() -> Self {
        TCellOwner::new()
    }
}

impl<Q: 'static> TCellOwner<Q> {
    /// Create the singleton owner instance.  Each owner may be used
    /// to create many `TCell` instances.  There may be only one
    /// instance of this type per process at any given time for each
    /// different marker type `Q`.  This call panics if a second
    /// simultaneous instance is created.
    ///
    /// Keep in mind that in Rust, tests are run in parallel unless
    /// specified otherwise (using e.g. `RUST_TEST_THREADS`), so
    /// this panic may be more easy to trigger than you might think.
    /// To avoid this panic, consider using the methods
    /// [`TCellOwner::wait_for_new`] or [`TCellOwner::try_new`] instead.
    pub fn new() -> Self {
        if let Some(owner) = TCellOwner::try_new() {
            owner
        } else {
            panic!("Illegal to create two TCellOwner instances with the same marker type parameter")
        }
    }

    /// Same as [`TCellOwner::new`], except if another `TCellOwner`
    /// of this type `Q` already exists, this returns `None` instead
    /// of panicking.
    pub fn try_new() -> Option<Self> {
        if SINGLETON_CHECK.lock().unwrap().insert(TypeId::of::<Q>()) {
            Some(Self { typ: PhantomData })
        } else {
            None
        }
    }

    /// Same as [`TCellOwner::new`], except if another `TCellOwner`
    /// of this type `Q` already exists, this function blocks the thread
    /// until that other instance is dropped.  This will of course deadlock
    /// if that other instance is owned by the same thread.
    ///
    /// Note that owners are expected to be relatively long-lived.  If
    /// you need to access cells associated with a given marker type
    /// from several different threads, the most efficient pattern is
    /// to have a single long-lived owner shared between threads, with
    /// a `Mutex` or `RwLock` to control access.  This call is
    /// intended to help when several independent tests need to run
    /// which use the same marker type internally.
    pub fn wait_for_new() -> Self {
        // Lock the HashSet mutex.
        let hashset_guard = SINGLETON_CHECK.lock().unwrap();

        // If the HashSet already contains the TypeId of Q, there is
        // another TCellOwner. Block the thread until it gets dropped.
        // (the HashSet mutex is unlocked while waiting)
        let mut hashset_guard = SINGLETON_CHECK_CONDVAR
            .wait_while(hashset_guard, |hashset| {
                hashset.contains(&TypeId::of::<Q>())
            })
            .unwrap();

        // If we get here, no other TCellOwner of this type exists.
        // Return a new TCellOwner.  When dropped, it will remove the
        // TypeId of Q from the HashSet, and notify all waiting threads.
        let inserted = hashset_guard.insert(TypeId::of::<Q>());
        assert!(inserted);
        Self { typ: PhantomData }
    }

    /// Create a new cell owned by this owner instance.  See also
    /// [`TCell::new`].
    ///
    /// [`TCell::new`]: struct.TCell.html
    pub fn cell<T>(&self, value: T) -> TCell<Q, T> {
        TCell::<Q, T>::new(value)
    }

    /// Borrow contents of a `TCell` immutably (read-only).  Many
    /// `TCell` instances can be borrowed immutably at the same time
    /// from the same owner.
    #[inline]
    pub fn ro<'a, T: ?Sized>(&'a self, tc: &'a TCell<Q, T>) -> &'a T {
        unsafe { &*tc.value.get() }
    }

    /// Borrow contents of a `TCell` mutably (read-write).  Only one
    /// `TCell` at a time can be borrowed from the owner using this
    /// call.  The returned reference must go out of scope before
    /// another can be borrowed.
    #[inline]
    pub fn rw<'a, T: ?Sized>(&'a mut self, tc: &'a TCell<Q, T>) -> &'a mut T {
        unsafe { &mut *tc.value.get() }
    }

    /// Borrow contents of two `TCell` instances mutably.  Panics if
    /// the two `TCell` instances point to the same memory.
    #[inline]
    pub fn rw2<'a, T: ?Sized, U: ?Sized>(
        &'a mut self,
        tc1: &'a TCell<Q, T>,
        tc2: &'a TCell<Q, U>,
    ) -> (&'a mut T, &'a mut U) {
        assert!(
            tc1 as *const _ as *const () as usize != tc2 as *const _ as *const () as usize,
            "Illegal to borrow same TCell twice with rw2()"
        );
        unsafe { (&mut *tc1.value.get(), &mut *tc2.value.get()) }
    }

    /// Borrow contents of three `TCell` instances mutably.  Panics if
    /// any pair of `TCell` instances point to the same memory.
    #[inline]
    pub fn rw3<'a, T: ?Sized, U: ?Sized, V: ?Sized>(
        &'a mut self,
        tc1: &'a TCell<Q, T>,
        tc2: &'a TCell<Q, U>,
        tc3: &'a TCell<Q, V>,
    ) -> (&'a mut T, &'a mut U, &'a mut V) {
        assert!(
            (tc1 as *const _ as *const () as usize != tc2 as *const _ as *const () as usize)
                && (tc2 as *const _ as *const () as usize != tc3 as *const _ as *const () as usize)
                && (tc3 as *const _ as *const () as usize != tc1 as *const _ as *const () as usize),
            "Illegal to borrow same TCell twice with rw3()"
        );
        unsafe {
            (
                &mut *tc1.value.get(),
                &mut *tc2.value.get(),
                &mut *tc3.value.get(),
            )
        }
    }
}

/// Cell whose contents is owned (for borrowing purposes) by a
/// [`TCellOwner`].
///
/// To borrow from this cell, use the borrowing calls on the
/// [`TCellOwner`] instance that shares the same marker type.
///
/// See also [crate documentation](index.html).
///
/// [`TCellOwner`]: struct.TCellOwner.html
pub struct TCell<Q, T: ?Sized> {
    // Use Invariant<Q> for invariant parameter
    owner: PhantomData<Invariant<Q>>,

    // It's fine to Send a TCell to a different thread if the contained
    // type is Send, because you can only send something if nothing
    // borrows it, so nothing can be accessing its contents.
    //
    // `UnsafeCell` disables `Sync` and already gives the right `Send` implementation.
    // `Sync` is re-enabled below under certain conditions.
    value: UnsafeCell<T>,
}

impl<Q, T> TCell<Q, T> {
    /// Create a new `TCell` owned for borrowing purposes by the
    /// `TCellOwner` derived from the same marker type `Q`.
    #[inline]
    pub const fn new(value: T) -> TCell<Q, T> {
        TCell {
            owner: PhantomData,
            value: UnsafeCell::new(value),
        }
    }
}

impl<Q, T: ?Sized> TCell<Q, T> {
    /// Borrow contents of this cell immutably (read-only).  Many
    /// `TCell` instances can be borrowed immutably at the same time
    /// from the same owner.
    #[inline]
    pub fn ro<'a>(&'a self, owner: &'a TCellOwner<Q>) -> &'a T {
        owner.ro(self)
    }

    /// Borrow contents of this cell mutably (read-write).  Only one
    /// `TCell` at a time can be borrowed from the owner using this
    /// call.  The returned reference must go out of scope before
    /// another can be borrowed.  To mutably borrow from two or three
    /// cells at the same time, see [`TCellOwner::rw2`] or
    /// [`TCellOwner::rw3`].
    #[inline]
    pub fn rw<'a>(&'a self, owner: &'a mut TCellOwner<Q>) -> &'a mut T {
        owner.rw(self)
    }
}

// We can add a Sync implementation, since it's fine to send a &TCell
// to another thread, and even mutably borrow the value there, as long
// as T is Send and Sync.
//
// The reason why TCell<T>'s impl of Sync requires T: Send + Sync
// instead of just T: Sync is that TCell provides interior mutability.
// If you send a &TCell<T> (and its owner) to a different thread, you
// can call .rw() to get a &mut T, and use std::mem::swap() to move
// the T, effectively sending the T to that other thread. That's not
// allowed if T: !Send.
//
// Note that the bounds on T for TCell<T>'s impl of Sync are the same
// as those of std::sync::RwLock<T>. That's not a coincidence.
// The way these types let you access T concurrently is the same,
// even though the locking mechanisms are different.
unsafe impl<Q, T: Send + Sync + ?Sized> Sync for TCell<Q, T> {}

#[cfg(test)]
mod tests {
    use super::{TCell, TCellOwner};
    #[test]
    #[should_panic]
    fn tcell_singleton_1() {
        struct Marker;
        let _owner1 = TCellOwner::<Marker>::new();
        let _owner2 = TCellOwner::<Marker>::new(); // Panic here
    }

    #[test]
    fn tcell_singleton_2() {
        struct Marker;
        let owner1 = TCellOwner::<Marker>::new();
        drop(owner1);
        let _owner2 = TCellOwner::<Marker>::new();
    }

    #[test]
    fn tcell_singleton_3() {
        struct Marker1;
        struct Marker2;
        let _owner1 = TCellOwner::<Marker1>::new();
        let _owner2 = TCellOwner::<Marker2>::new();
    }

    #[test]
    fn tcell_singleton_try_new() {
        struct Marker;
        let owner1 = TCellOwner::<Marker>::try_new();
        assert!(owner1.is_some());
        let owner2 = TCellOwner::<Marker>::try_new();
        assert!(owner2.is_none());
    }

    #[test]
    fn tcell() {
        struct Marker;
        type ACellOwner = TCellOwner<Marker>;
        type ACell<T> = TCell<Marker, T>;
        let mut owner = ACellOwner::new();
        let c1 = ACell::new(100u32);
        let c2 = owner.cell(200u32);
        (*owner.rw(&c1)) += 1;
        (*owner.rw(&c2)) += 2;
        let c1ref = owner.ro(&c1);
        let c2ref = owner.ro(&c2);
        let total = *c1ref + *c2ref;
        assert_eq!(total, 303);
    }

    #[test]
    #[should_panic]
    fn tcell_threads() {
        struct Marker;
        type ACellOwner = TCellOwner<Marker>;
        // Do it this way around to make the panic appear in the main
        // thread, to avoid spurious messages in the test output.
        let (tx, rx) = std::sync::mpsc::sync_channel(0);
        std::thread::spawn(move || {
            let mut _owner = ACellOwner::new();
            tx.send(()).unwrap();
            // Delay long enough for the panic to occur; this will
            // fail if the main thread panics, so ignore that
            let _ = tx.send(());
        });
        rx.recv().unwrap();
        let mut _owner = ACellOwner::new(); // Panics here
        let _ = rx.recv();
    }

    #[test]
    fn tcell_wait_for_new_in_100_threads() {
        use rand::Rng;
        use std::sync::Arc;
        struct Marker;
        type ACellOwner = TCellOwner<Marker>;
        type ACell = TCell<Marker, i32>;
        let cell_arc = Arc::new(ACell::new(0));
        let mut handles = vec![];
        for _ in 0..100 {
            let cell_arc_clone = cell_arc.clone();
            let handle = std::thread::spawn(move || {
                // wait a bit
                let mut rng = rand::thread_rng();
                std::thread::sleep(std::time::Duration::from_millis(rng.gen_range(0..10)));
                // create a new owner
                let mut owner = ACellOwner::wait_for_new();
                // read the cell's current value
                let current_cell_val = *owner.ro(&*cell_arc_clone);
                // wait a bit more
                std::thread::sleep(std::time::Duration::from_millis(rng.gen_range(0..10)));
                // write the old cell value + 1 to the cell
                // (no other thread should have been able to modify the cell in the
                // meantime because we still hold on to the owner)
                *owner.rw(&*cell_arc_clone) = current_cell_val + 1;
            });
            handles.push(handle);
        }
        for handle in handles {
            assert!(handle.join().is_ok());
        }
        let owner = ACellOwner::wait_for_new();
        assert_eq!(*owner.ro(&*cell_arc), 100);
    }

    #[test]
    fn tcell_wait_for_new_timeout() {
        fn assert_time_out<F>(d: std::time::Duration, f: F)
        where
            F: FnOnce(),
            F: Send + 'static,
        {
            let (done_tx, done_rx) = std::sync::mpsc::channel();
            let _handle = std::thread::spawn(move || {
                let val = f();
                done_tx.send(()).unwrap();
                val
            });

            match done_rx.recv_timeout(d) {
                Ok(_) => panic!("ACellOwner::wait_for_new completed (but it shouldn't have)"),
                Err(_) => {
                    // thread timed out as expected
                }
            }
        }

        assert_time_out(std::time::Duration::from_millis(1000), || {
            struct Marker;
            type ACellOwner = TCellOwner<Marker>;

            let _owner1 = ACellOwner::new();
            let _owner2 = ACellOwner::wait_for_new();
        });
    }

    #[test]
    fn tcell_unsized() {
        struct Marker;
        type ACellOwner = TCellOwner<Marker>;
        type ACell<T> = TCell<Marker, T>;
        let mut owner = ACellOwner::new();
        struct Squares(u32);
        struct Integers(u64);
        trait Series {
            fn step(&mut self);
            fn value(&self) -> u64;
        }
        impl Series for Squares {
            fn step(&mut self) {
                self.0 += 1;
            }
            fn value(&self) -> u64 {
                (self.0 as u64) * (self.0 as u64)
            }
        }
        impl Series for Integers {
            fn step(&mut self) {
                self.0 += 1;
            }
            fn value(&self) -> u64 {
                self.0
            }
        }
        fn series(init: u32, is_squares: bool) -> Box<ACell<dyn Series>> {
            if is_squares {
                Box::new(ACell::new(Squares(init)))
            } else {
                Box::new(ACell::new(Integers(init as u64)))
            }
        }

        let own = &mut owner;
        let cell1 = series(4, false);
        let cell2 = series(7, true);
        let cell3 = series(3, true);
        assert_eq!(cell1.ro(own).value(), 4);
        cell1.rw(own).step();
        assert_eq!(cell1.ro(own).value(), 5);
        assert_eq!(own.ro(&cell2).value(), 49);
        own.rw(&cell2).step();
        assert_eq!(own.ro(&cell2).value(), 64);
        let (r1, r2, r3) = own.rw3(&cell1, &cell2, &cell3);
        r1.step();
        r2.step();
        r3.step();
        assert_eq!(cell1.ro(own).value(), 6);
        assert_eq!(cell2.ro(own).value(), 81);
        assert_eq!(cell3.ro(own).value(), 16);
        let (r1, r2) = own.rw2(&cell1, &cell2);
        r1.step();
        r2.step();
        assert_eq!(cell1.ro(own).value(), 7);
        assert_eq!(cell2.ro(own).value(), 100);
    }
}