1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright (c) 2017-present PyO3 Project and Contributors
//! Python type object information

use crate::impl_::pyclass::PyClassItemsIter;
use crate::internal_tricks::extract_cstr_or_leak_cstring;
use crate::once_cell::GILOnceCell;
use crate::pyclass::create_type_object;
use crate::pyclass::PyClass;
use crate::types::{PyAny, PyType};
use crate::{conversion::IntoPyPointer, PyMethodDefType};
use crate::{ffi, AsPyPointer, PyNativeType, PyObject, PyResult, Python};
use parking_lot::{const_mutex, Mutex};
use std::thread::{self, ThreadId};

/// `T: PyLayout<U>` represents that `T` is a concrete representation of `U` in the Python heap.
/// E.g., `PyCell` is a concrete representation of all `pyclass`es, and `ffi::PyObject`
/// is of `PyAny`.
///
/// This trait is intended to be used internally.
///
/// # Safety
///
/// This trait must only be implemented for types which represent valid layouts of Python objects.
pub unsafe trait PyLayout<T> {}

/// `T: PySizedLayout<U>` represents that `T` is not a instance of
/// [`PyVarObject`](https://docs.python.org/3.8/c-api/structures.html?highlight=pyvarobject#c.PyVarObject).
/// In addition, that `T` is a concrete representation of `U`.
pub trait PySizedLayout<T>: PyLayout<T> + Sized {}

/// Python type information.
/// All Python native types (e.g., `PyDict`) and `#[pyclass]` structs implement this trait.
///
/// This trait is marked unsafe because:
///  - specifying the incorrect layout can lead to memory errors
///  - the return value of type_object must always point to the same PyTypeObject instance
///
/// It is safely implemented by the `pyclass` macro.
///
/// # Safety
///
/// Implementations must provide an implementation for `type_object_raw` which infallibly produces a
/// non-null pointer to the corresponding Python type object.
pub unsafe trait PyTypeInfo: Sized {
    /// Class name.
    const NAME: &'static str;

    /// Module name, if any.
    const MODULE: Option<&'static str>;

    /// Utility type to make Py::as_ref work.
    type AsRefTarget: PyNativeType;

    /// Returns the PyTypeObject instance for this type.
    fn type_object_raw(py: Python<'_>) -> *mut ffi::PyTypeObject;

    /// Returns the safe abstraction over the type object.
    fn type_object(py: Python<'_>) -> &PyType {
        unsafe { py.from_borrowed_ptr(Self::type_object_raw(py) as _) }
    }

    /// Checks if `object` is an instance of this type or a subclass of this type.
    fn is_type_of(object: &PyAny) -> bool {
        unsafe { ffi::PyObject_TypeCheck(object.as_ptr(), Self::type_object_raw(object.py())) != 0 }
    }

    /// Checks if `object` is an instance of this type.
    fn is_exact_type_of(object: &PyAny) -> bool {
        unsafe { ffi::Py_TYPE(object.as_ptr()) == Self::type_object_raw(object.py()) }
    }
}

/// Legacy trait which previously held the `type_object` method now found on `PyTypeInfo`.
///
/// # Safety
///
/// This trait used to have stringent safety requirements, but they are now irrelevant as it is deprecated.
#[deprecated(
    since = "0.17.0",
    note = "PyTypeObject::type_object was moved to PyTypeInfo::type_object"
)]
pub unsafe trait PyTypeObject: PyTypeInfo {}

#[allow(deprecated)]
unsafe impl<T: PyTypeInfo> PyTypeObject for T {}

/// Lazy type object for PyClass.
#[doc(hidden)]
pub struct LazyStaticType {
    // Boxed because Python expects the type object to have a stable address.
    value: GILOnceCell<*mut ffi::PyTypeObject>,
    // Threads which have begun initialization of the `tp_dict`. Used for
    // reentrant initialization detection.
    initializing_threads: Mutex<Vec<ThreadId>>,
    tp_dict_filled: GILOnceCell<PyResult<()>>,
}

impl LazyStaticType {
    pub const fn new() -> Self {
        LazyStaticType {
            value: GILOnceCell::new(),
            initializing_threads: const_mutex(Vec::new()),
            tp_dict_filled: GILOnceCell::new(),
        }
    }

    pub fn get_or_init<T: PyClass>(&self, py: Python<'_>) -> *mut ffi::PyTypeObject {
        fn inner<T: PyClass>() -> *mut ffi::PyTypeObject {
            // Safety: `py` is held by the caller of `get_or_init`.
            let py = unsafe { Python::assume_gil_acquired() };
            create_type_object::<T>(py)
        }

        // Uses explicit GILOnceCell::get_or_init::<fn() -> *mut ffi::PyTypeObject> monomorphization
        // so that only this one monomorphization is instantiated (instead of one closure monormization for each T).
        let type_object = *self
            .value
            .get_or_init::<fn() -> *mut ffi::PyTypeObject>(py, inner::<T>);
        self.ensure_init(py, type_object, T::NAME, T::items_iter());
        type_object
    }

    fn ensure_init(
        &self,
        py: Python<'_>,
        type_object: *mut ffi::PyTypeObject,
        name: &str,
        items_iter: PyClassItemsIter,
    ) {
        // We might want to fill the `tp_dict` with python instances of `T`
        // itself. In order to do so, we must first initialize the type object
        // with an empty `tp_dict`: now we can create instances of `T`.
        //
        // Then we fill the `tp_dict`. Multiple threads may try to fill it at
        // the same time, but only one of them will succeed.
        //
        // More importantly, if a thread is performing initialization of the
        // `tp_dict`, it can still request the type object through `get_or_init`,
        // but the `tp_dict` may appear empty of course.

        if self.tp_dict_filled.get(py).is_some() {
            // `tp_dict` is already filled: ok.
            return;
        }

        let thread_id = thread::current().id();
        {
            let mut threads = self.initializing_threads.lock();
            if threads.contains(&thread_id) {
                // Reentrant call: just return the type object, even if the
                // `tp_dict` is not filled yet.
                return;
            }
            threads.push(thread_id);
        }

        struct InitializationGuard<'a> {
            initializing_threads: &'a Mutex<Vec<ThreadId>>,
            thread_id: ThreadId,
        }
        impl Drop for InitializationGuard<'_> {
            fn drop(&mut self) {
                let mut threads = self.initializing_threads.lock();
                threads.retain(|id| *id != self.thread_id);
            }
        }

        let guard = InitializationGuard {
            initializing_threads: &self.initializing_threads,
            thread_id,
        };

        // Pre-compute the class attribute objects: this can temporarily
        // release the GIL since we're calling into arbitrary user code. It
        // means that another thread can continue the initialization in the
        // meantime: at worst, we'll just make a useless computation.
        let mut items = vec![];
        for class_items in items_iter {
            for def in class_items.methods {
                if let PyMethodDefType::ClassAttribute(attr) = def {
                    let key = extract_cstr_or_leak_cstring(
                        attr.name,
                        "class attribute name cannot contain nul bytes",
                    )
                    .unwrap();

                    match (attr.meth.0)(py) {
                        Ok(val) => items.push((key, val)),
                        Err(e) => panic!(
                            "An error occurred while initializing `{}.{}`: {}",
                            name,
                            attr.name.trim_end_matches('\0'),
                            e
                        ),
                    }
                }
            }
        }

        // Now we hold the GIL and we can assume it won't be released until we
        // return from the function.
        let result = self.tp_dict_filled.get_or_init(py, move || {
            let result = initialize_tp_dict(py, type_object as *mut ffi::PyObject, items);

            // Initialization successfully complete, can clear the thread list.
            // (No further calls to get_or_init() will try to init, on any thread.)
            std::mem::forget(guard);
            *self.initializing_threads.lock() = Vec::new();
            result
        });

        if let Err(err) = result {
            err.clone_ref(py).print(py);
            panic!("An error occurred while initializing `{}.__dict__`", name);
        }
    }
}

fn initialize_tp_dict(
    py: Python<'_>,
    type_object: *mut ffi::PyObject,
    items: Vec<(&'static std::ffi::CStr, PyObject)>,
) -> PyResult<()> {
    // We hold the GIL: the dictionary update can be considered atomic from
    // the POV of other threads.
    for (key, val) in items {
        let ret = unsafe { ffi::PyObject_SetAttrString(type_object, key.as_ptr(), val.into_ptr()) };
        crate::err::error_on_minusone(py, ret)?;
    }
    Ok(())
}

// This is necessary for making static `LazyStaticType`s
unsafe impl Sync for LazyStaticType {}

#[inline]
pub(crate) unsafe fn get_tp_alloc(tp: *mut ffi::PyTypeObject) -> Option<ffi::allocfunc> {
    #[cfg(not(Py_LIMITED_API))]
    {
        (*tp).tp_alloc
    }

    #[cfg(Py_LIMITED_API)]
    {
        let ptr = ffi::PyType_GetSlot(tp, ffi::Py_tp_alloc);
        std::mem::transmute(ptr)
    }
}

#[inline]
pub(crate) unsafe fn get_tp_free(tp: *mut ffi::PyTypeObject) -> ffi::freefunc {
    #[cfg(not(Py_LIMITED_API))]
    {
        (*tp).tp_free.unwrap()
    }

    #[cfg(Py_LIMITED_API)]
    {
        let ptr = ffi::PyType_GetSlot(tp, ffi::Py_tp_free);
        debug_assert_ne!(ptr, std::ptr::null_mut());
        std::mem::transmute(ptr)
    }
}

#[cfg(test)]
mod tests {
    #[test]
    #[allow(deprecated)]
    fn test_deprecated_type_object() {
        // Even though PyTypeObject is deprecated, simple usages of it as a trait bound should continue to work.
        use super::PyTypeObject;
        use crate::types::{PyList, PyType};
        use crate::Python;

        fn get_type_object<T: PyTypeObject>(py: Python<'_>) -> &PyType {
            T::type_object(py)
        }

        Python::with_gil(|py| {
            assert!(get_type_object::<PyList>(py).is(<PyList as crate::PyTypeInfo>::type_object(py)))
        });
    }
}