1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
//! This crate provides a type [`Value`] that represents a [Python literal].
//! [`Value`] can be parsed from a string and formatted as a string.
//!
//! [`Value`]: enum.Value.html
//! [Python literal]: https://docs.python.org/3/reference/lexical_analysis.html#literals
//!
//! # Example
//!
//! ```
//! extern crate num;
//! extern crate py_literal;
//!
//! use num::{BigInt, Complex};
//! use py_literal::Value;
//!
//! # fn main() -> Result<(), py_literal::ParseError> {
//! // Parse a literal value from a string.
//! let value: Value = "{ 'foo': [5, (7e3,)], 2 - 5j: {b'bar'} }".parse()?;
//! assert_eq!(
//!     value,
//!     Value::Dict(vec![
//!         (
//!             Value::String("foo".to_string()),
//!             Value::List(vec![
//!                 Value::Integer(BigInt::from(5)),
//!                 Value::Tuple(vec![Value::Float(7e3)]),
//!             ]),
//!         ),
//!         (
//!             Value::Complex(Complex::new(2., -5.)),
//!             Value::Set(vec![Value::Bytes(b"bar".to_vec())]),
//!         ),
//!     ]),
//! );
//!
//! // Format a literal value as a string.
//! let formatted = format!("{}", value);
//! assert_eq!(
//!     formatted,
//!     "{'foo': [5, (7e3,)], 2-5j: {b'bar'}}",
//! );
//! # Ok(())
//! # }
//! ```

mod format;
#[macro_use]
mod parse_macros;
mod parse;

pub use crate::format::FormatError;
pub use crate::parse::ParseError;

use num_bigint as numb;
use num_complex as numc;
use std::fmt;

/// Python literal.
///
/// This type should be able to express everything that Python's
/// [`ast.literal_eval()`] can evaluate, except for operators. Similar to
/// `literal_eval()`, addition and subtraction of numbers is supported in the
/// parser. However, binary addition and subtraction operators cannot be
/// formatted using `Value`.
///
/// [`ast.literal_eval()`]: https://docs.python.org/3/library/ast.html#ast.literal_eval
#[derive(Clone, Debug, PartialEq)]
pub enum Value {
    /// Python string (`str`). When parsing, backslash escapes are interpreted.
    /// When formatting, backslash escapes are used to ensure the result
    /// contains only ASCII chars.
    String(String),
    /// Python byte sequence (`bytes`). When parsing, backslash escapes are
    /// interpreted. When formatting, backslash escapes are used to ensure the
    /// result contains only ASCII chars.
    Bytes(Vec<u8>),
    /// Python integer (`int`). Python integers have unlimited precision, so we
    /// use `BigInt`.
    Integer(numb::BigInt),
    /// Python floating-point number (`float`). The representation and
    /// precision of the Python `float` type varies by the machine where the
    /// program is executing, but `f64` should be good enough.
    Float(f64),
    /// Python complex number (`complex`). The Python `complex` type contains
    /// two `float` values.
    Complex(numc::Complex<f64>),
    /// Python tuple (`tuple`).
    Tuple(Vec<Value>),
    /// Python list (`list`).
    List(Vec<Value>),
    /// Python dictionary (`dict`).
    Dict(Vec<(Value, Value)>),
    /// Python set (`set`).
    Set(Vec<Value>),
    /// Python boolean (`bool`).
    Boolean(bool),
    /// Python `None`.
    None,
}

impl fmt::Display for Value {
    /// Formats the value as a Python literal.
    ///
    /// Currently, this just calls `self.format_ascii()`, but that may change
    /// in the future.
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        // TODO: is there a better way to do this?
        write!(f, "{}", self.format_ascii().map_err(|_| fmt::Error)?)
    }
}

impl Value {
    /// Returns `true` if `self` is `Value::String`. Returns `false` otherwise.
    pub fn is_string(&self) -> bool {
        matches!(self, Value::String(_))
    }

    /// If `self` is `Value::String`, returns the associated string. Returns `None` otherwise.
    pub fn as_string(&self) -> Option<&String> {
        match self {
            Value::String(string) => Some(string),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Bytes`. Returns `false` otherwise.
    pub fn is_bytes(&self) -> bool {
        matches!(self, Value::Bytes(_))
    }

    /// If `self` is `Value::Bytes`, returns the associated bytes. Returns `None` otherwise.
    pub fn as_bytes(&self) -> Option<&Vec<u8>> {
        match self {
            Value::Bytes(bytes) => Some(bytes),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Integer`. Returns `false` otherwise.
    pub fn is_integer(&self) -> bool {
        matches!(self, Value::Integer(_))
    }

    /// If `self` is `Value::Integer`, returns the associated integer. Returns `None` otherwise.
    pub fn as_integer(&self) -> Option<&numb::BigInt> {
        match self {
            Value::Integer(integer) => Some(integer),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Float`. Returns `false` otherwise.
    pub fn is_float(&self) -> bool {
        matches!(self, Value::Float(_))
    }

    /// If `self` is `Value::Float`, returns the associated float. Returns `None` otherwise.
    pub fn as_float(&self) -> Option<f64> {
        match self {
            Value::Float(float) => Some(*float),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Complex`. Returns `false` otherwise.
    pub fn is_complex(&self) -> bool {
        matches!(self, Value::Complex(_))
    }

    /// If `self` is `Value::Complex`, returns the associated complex number. Returns `None` otherwise.
    pub fn as_complex(&self) -> Option<numc::Complex<f64>> {
        match self {
            Value::Complex(complex) => Some(*complex),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Tuple`. Returns `false` otherwise.
    pub fn is_tuple(&self) -> bool {
        matches!(self, Value::Tuple(_))
    }

    /// If `self` is `Value::Tuple`, returns the associated data. Returns `None` otherwise.
    pub fn as_tuple(&self) -> Option<&Vec<Value>> {
        match self {
            Value::Tuple(tuple) => Some(tuple),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::List`. Returns `false` otherwise.
    pub fn is_list(&self) -> bool {
        matches!(self, Value::List(_))
    }

    /// If `self` is `Value::List`, returns the associated data. Returns `None` otherwise.
    pub fn as_list(&self) -> Option<&Vec<Value>> {
        match self {
            Value::List(list) => Some(list),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Dict`. Returns `false` otherwise.
    pub fn is_dict(&self) -> bool {
        matches!(self, Value::Dict(_))
    }

    /// If `self` is `Value::Dict`, returns the associated data. Returns `None` otherwise.
    pub fn as_dict(&self) -> Option<&Vec<(Value, Value)>> {
        match self {
            Value::Dict(dict) => Some(dict),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Set`. Returns `false` otherwise.
    pub fn is_set(&self) -> bool {
        matches!(self, Value::Set(_))
    }

    /// If `self` is `Value::Set`, returns the associated data. Returns `None` otherwise.
    pub fn as_set(&self) -> Option<&Vec<Value>> {
        match self {
            Value::Set(set) => Some(set),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::Boolean`. Returns `false` otherwise.
    pub fn is_boolean(&self) -> bool {
        matches!(self, Value::Boolean(_))
    }

    /// If `self` is `Value::Boolean`, returns the associated data. Returns `None` otherwise.
    pub fn as_boolean(&self) -> Option<bool> {
        match self {
            Value::Boolean(boolean) => Some(*boolean),
            _ => None,
        }
    }

    /// Returns `true` if `self` is `Value::None`. Returns `false` otherwise.
    pub fn is_none(&self) -> bool {
        matches!(self, Value::None)
    }
}