1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
use crate::model::*;
use indicatif::{ProgressBar, ProgressStyle};
use rand::{thread_rng, Rng};

use std::error::Error;
use std::fs::File;
use std::io::Write;

/// PSO struct
///
/// contains methods for performing Particle Swarm Optimization
pub struct PSO {
    chi: f64,
    v_max: f64,
    pub model: Model,
    neighborhoods: Vec<Vec<usize>>,
    velocities: Population,
    pub neigh_population: Population,
    pub best_f_values: Vec<f64>,
    pub best_f_trajectory: Vec<f64>,
    pub best_x_trajectory: Vec<Particle>,
}

impl PSO {
    /// Initialize Particle Swarm Optimization
    pub fn new(model: Model) -> PSO {
        let phi = model.config.c1 + model.config.c2;
        let phi_squared = phi.powf(2.0);
        let tmp = phi_squared - (4.0 * phi);
        let tmp = tmp.sqrt();
        let chi = 2.0 / (2.0 - phi - tmp).abs();
        let v_max = model.config.alpha * 5.0;
        let neighborhoods = PSO::create_neighborhoods(&model);

        // initialize
        let mut rng = thread_rng();
        let mut velocities = vec![];
        for _ in 0..model.config.population_size {
            let mut tmp = vec![];
            for _ in 0..model.flat_dim {
                tmp.push(rng.gen_range(v_max * -1.0..v_max * 1.0));
            }
            velocities.push(tmp);
        }

        let best_f_values = model.population_f_scores.clone();
        let neigh_population = model.population.clone();
        let best_f_trajectory = vec![model.f_best];
        let best_x_trajectory = vec![model.x_best.clone()];

        PSO {
            chi,
            v_max,
            model,
            neighborhoods,
            velocities,
            best_f_values,
            neigh_population,
            best_f_trajectory,
            best_x_trajectory,
        }
    }

    /// Performs Particle Swarm Optimization
    ///
    /// # Panics
    ///
    /// Panics if any particle coefficient becomes NaN
    pub fn run(&mut self, terminate: fn(f64) -> bool) -> usize {
        let mut bar: Option<ProgressBar> = None;
        if self.model.config.progress_bar {
            bar = Some(ProgressBar::new(self.model.config.t_max as u64));
            match bar {
                Some(ref bar) => {
                    bar.set_style(ProgressStyle::default_bar().template(
                        "{msg} [{elapsed}] {bar:20.cyan/blue} {pos:>7}/{len:7} ETA: {eta}",
                    ));
                }
                None => {}
            }
        }
        let mut k = 0;
        let pop_size = self.model.config.population_size;
        loop {
            // Update velocity and positions
            self.update_velocity_and_pos();

            // Evaluate & update best
            self.model.get_f_values();
            self.update_best_positions();

            self.model.population = self.model.population.clone();
            k += pop_size;
            match bar {
                Some(ref bar) => {
                    bar.inc(pop_size as u64);
                    bar.set_message(format!("{:.6}", self.model.f_best));
                }
                None => {}
            }
            if k > self.model.config.t_max || terminate(self.model.f_best) {
                break;
            }
        }
        match bar {
            Some(ref bar) => {
                bar.finish_and_clear();
            }
            None => {}
        }
        k
    }

    /// Updates the velocity and position of each particle in the population
    fn update_velocity_and_pos(&mut self) {
        let mut rng = thread_rng();

        for i in 0..self.model.config.population_size {
            let lbest = &self.neigh_population[self.local_best(i)];
            for j in 0..self.model.flat_dim {
                let r1 = rng.gen_range(-1.0..1.0);
                let r2 = rng.gen_range(-1.0..1.0);
                let cog = self.model.config.c1
                    * r1
                    * (self.neigh_population[i][j] - self.model.population[i][j]);

                let soc = self.model.config.c2 * r2 * (lbest[j] - self.model.population[i][j]);
                let v = self.chi * (self.velocities[i][j] + cog + soc);

                // check bounds
                self.velocities[i][j] = if v.abs() > self.v_max {
                    v.signum() * self.v_max
                } else {
                    v
                };

                let x = self.model.population[i][j] + self.model.config.lr * self.velocities[i][j];

                let bound_index =
                    j % self.model.config.dimensions[self.model.config.dimensions.len() - 1];
                let (lower_bound, upper_bound) = self.model.config.bounds[bound_index];
                // check bounds
                if x > upper_bound {
                    self.model.population[i][j] = upper_bound;
                } else if x < lower_bound {
                    self.model.population[i][j] = lower_bound;
                } else {
                    self.model.population[i][j] = x;
                }
                if x.is_nan() {
                    panic!("A coefficient became NaN!");
                }
            }
        }
    }

    /// Updates the best found positions
    fn update_best_positions(&mut self) {
        for i in 0..self.best_f_values.len() {
            let new = self.model.population_f_scores[i];
            let old = self.best_f_values[i];

            if new < old {
                self.best_f_values[i] = new;
                self.neigh_population[i] = self.model.population[i].clone();
            }
        }
        self.best_f_trajectory.push(self.model.f_best);
        self.best_x_trajectory.push(self.model.x_best.clone());
    }

    /// Returns the neighborhood local best
    fn local_best(&self, i: usize) -> usize {
        let best = PSO::argsort(&self.best_f_values);
        for b in best {
            if self.neighborhoods[i].iter().any(|&n| n == b) {
                return b;
            }
        }
        0
    }

    /// Create the neighborhood indices for each particle
    fn create_neighborhoods(model: &Model) -> Vec<Vec<usize>> {
        let mut neighborhoods;
        match model.config.neighborhood_type {
            NeighborhoodType::Lbest => {
                neighborhoods = vec![];
                for i in 0..model.config.population_size {
                    let mut neighbor = vec![];
                    let first_neighbor = i as i32 - model.config.rho as i32;
                    let last_neighbor = i as i32 + model.config.rho as i32;

                    for neighbor_i in first_neighbor..last_neighbor {
                        neighbor.push(if neighbor_i < 0 {
                            (model.config.population_size as i32 - neighbor_i) as usize
                        } else {
                            neighbor_i as usize
                        });
                    }
                    neighborhoods.push(neighbor)
                }
            }
            NeighborhoodType::Gbest => {
                neighborhoods = vec![];
                for _ in 0..model.config.population_size {
                    let mut tmp = vec![];
                    for j in 0..model.config.population_size {
                        tmp.push(j);
                    }
                    neighborhoods.push(tmp);
                }
            }
        }
        neighborhoods
    }

    /// Returns the indices that would sort a vector
    fn argsort(v: &Vec<f64>) -> Vec<usize> {
        let mut idx = (0..v.len()).collect::<Vec<_>>();
        idx.sort_by(|&i, &j| v[i].partial_cmp(&v[j]).expect("NaN"));
        idx
    }

    /// Writes the best found objective function value for all iterations separated by newline characters
    pub fn write_f_to_file(&self, filepath: &str) -> Result<(), Box<dyn Error>> {
        let best_f_str: Vec<String> = self
            .best_f_trajectory
            .iter()
            .map(|n| n.to_string())
            .collect();

        let mut file = File::create(filepath)?;
        writeln!(file, "{}", best_f_str.join("\n"))?;

        Ok(())
    }

    /// Writes the best found minimizer for all iterations
    ///
    /// Vector coefficients are comma-separated, and the best vector at each iteration is terminated with a newline character
    pub fn write_x_to_file(&self, filepath: &str) -> Result<(), Box<dyn Error>> {
        let best_x_str: Vec<String> = self
            .best_x_trajectory
            .iter()
            .map(|x| {
                x.iter()
                    .map(|coef: &f64| coef.to_string())
                    .collect::<Vec<String>>()
                    .join(", ")
            })
            .collect();

        let mut file = File::create(filepath)?;
        writeln!(file, "{}", best_x_str.join("\n"))?;

        Ok(())
    }
}