1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Scheme defined in section 4.2. The idea for blind signatures can be taken from Coconut

use crate::errors::PSError;
use crate::{ate_2_pairing, VerkeyGroup, VerkeyGroupVec, SignatureGroup, SignatureGroupVec};
use amcl_wrapper::field_elem::{FieldElement, FieldElementVector};
use amcl_wrapper::group_elem::{GroupElement, GroupElementVector};
use crate::keys::{Params, Sigkey, Verkey};

/// Created by the signer when no blinded messages. Also the receiver of a blind signature can get
/// this by unblinding the blind signature.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Signature {
    pub sigma_1: SignatureGroup,
    pub sigma_2: SignatureGroup,
}

impl_PoK_VC!(
    ProverCommittingSignatureGroup,
    ProverCommittedSignatureGroup,
    ProofSignatureGroup,
    SignatureGroup,
    SignatureGroupVec
);

impl Signature {
    /// Signer creates a signature.
    pub fn new(messages: &[FieldElement], sigkey: &Sigkey, params: &Params) -> Result<Self, PSError> {
        Self::check_sigkey_and_messages_compat(messages, sigkey)?;
        // A random h should be generated which is same as generating a random u and then computing h = g^u
        let u = FieldElement::random();
        let (sigma_1, sigma_2) = Self::sign_with_sigma_1_generated_from_given_exp(
            messages,
            sigkey,
            &u,
            0,
            &params.g,
        )?;
        Ok(Self { sigma_1, sigma_2 })
    }

    pub fn new_deterministic(messages: &[FieldElement], sigkey: &Sigkey) -> Result<Self, PSError> {
        Self::check_sigkey_and_messages_compat(messages, sigkey)?;
        let sigma_1 = Self::generate_sigma_1_from_messages(messages);
        let sigma_2 = Self::sign_with_given_sigma_1(messages, sigkey, 0, &sigma_1)?;
        Ok(Self {sigma_1, sigma_2})
    }

    /// Generate signature when first element of signature tuple is generated using given exponent
    /// Does only 1 scalar multiplication
    pub fn sign_with_sigma_1_generated_from_given_exp(
        messages: &[FieldElement],
        sigkey: &Sigkey,
        u: &FieldElement,
        offset: usize,
        g: &SignatureGroup,
    ) -> Result<(SignatureGroup, SignatureGroup), PSError> {
        // h = g^u
        let h = g * u;
        let h_exp = Self::sign_with_given_sigma_1(messages, sigkey, offset, &h)?;
        Ok((h, h_exp))
    }

    /// Generate signature when first element of signature tuple is given
    pub fn sign_with_given_sigma_1(messages: &[FieldElement],
                                   sigkey: &Sigkey,
                                   offset: usize,
                                   h: &SignatureGroup) -> Result<SignatureGroup, PSError> {
        if sigkey.y.len() != offset + messages.len() {
            return Err(PSError::UnsupportedNoOfMessages {
                expected: offset + messages.len(),
                given: sigkey.y.len()
            });
        }
        // h^(x + y_j*m_j + y_{j+1}*m_{j+1} + y_{j+2}*m_{j+2} + ...) = g^{u * (x + y_j*m_j + y_{j+1}*m_{j+1} + y_{j+2}*m_{j+2} + ...)}
        let mut exp = sigkey.x.clone();
        for i in 0..messages.len() {
            exp += &sigkey.y[offset + i] * &messages[i];
        }
        let h_exp = h * &exp;
        Ok(h_exp)
    }

    /// Verify a signature. Can verify unblinded sig received from a signer and the aggregate sig as well.
    pub fn verify(
        &self,
        messages: &[FieldElement],
        vk: &Verkey,
        params: &Params,
    ) -> Result<bool, PSError> {
        if vk.Y_tilde.len() != messages.len() {
            return Err(PSError::UnsupportedNoOfMessages {
                expected: vk.Y_tilde.len(),
                given: messages.len()
            });
        }
        if self.sigma_1.is_identity() || self.sigma_2.is_identity() {
            return Ok(false);
        }
        let mut Y_m_bases = VerkeyGroupVec::with_capacity(messages.len());
        let mut Y_m_exps = FieldElementVector::with_capacity(messages.len());
        for i in 0..messages.len() {
            Y_m_bases.push(vk.Y_tilde[i].clone());
            Y_m_exps.push(messages[i].clone());
        }
        // Y_m = X_tilde * Y_tilde[1]^m_1 * Y_tilde[2]^m_2 * ...Y_tilde[i]^m_i
        let Y_m = &vk.X_tilde + &(Y_m_bases.multi_scalar_mul_var_time(&Y_m_exps).unwrap());
        // e(sigma_1, Y_m) == e(sigma_2, g2) => e(sigma_1, Y_m) * e(-sigma_2, g2) == 1, if precomputation can be used, then
        // inverse in sigma_2 can be avoided since inverse of g_tilde can be precomputed
        let e = ate_2_pairing(&self.sigma_1, &Y_m, &(self.sigma_2.negation()), &params.g_tilde);
        Ok(e.is_one())
    }

    pub fn to_bytes(&self) -> Vec<u8> {
        let mut bytes = vec![];
        bytes.append(&mut self.sigma_1.to_bytes());
        bytes.append(&mut self.sigma_2.to_bytes());
        bytes
    }

    pub fn check_verkey_and_messages_compat(
        messages: &[FieldElement],
        verkey: &Verkey,
    ) -> Result<(), PSError> {
        if messages.len() != verkey.Y_tilde.len() {
            return Err(PSError::UnsupportedNoOfMessages {
                expected: messages.len(),
                given: verkey.Y_tilde.len(),
            });
        }
        Ok(())
    }

    pub fn check_sigkey_and_messages_compat(
        messages: &[FieldElement],
        sigkey: &Sigkey,
    ) -> Result<(), PSError> {
        if sigkey.y.len() != messages.len() {
            return Err(PSError::UnsupportedNoOfMessages {
                expected: sigkey.y.len(),
                given: messages.len()
            });
        }
        Ok(())
    }

    /// Generate first element of the signature by hashing the messages. Since all messages are of
    /// same size, the is no need of a delimiter between the byte representation of the messages.
    fn generate_sigma_1_from_messages(messages: &[FieldElement]) -> SignatureGroup {
        let mut msg_bytes = vec![];
        for i in messages {
            msg_bytes.append(&mut i.to_bytes());
        }
        SignatureGroup::from_msg_hash(&msg_bytes)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::keys::keygen;
    // For benchmarking
    use std::time::{Duration, Instant};

    #[test]
    fn test_signature_all_known_messages() {
        let params = Params::new("test".as_bytes());
        for i in 0..10 {
            let count_msgs = (i % 5) + 1;
            let (sk, vk) = keygen(count_msgs, &params);
            let msgs = FieldElementVector::random(count_msgs);
            let sig = Signature::new(msgs.as_slice(), &sk, &params).unwrap();
            assert!(sig.verify(msgs.as_slice(), &vk, &params).unwrap());
        }
    }

    #[test]
    fn test_deterministic_signature_all_known_messages() {
        let params = Params::new("test".as_bytes());
        for i in 0..10 {
            let count_msgs = (i % 5) + 1;
            let (sk, vk) = keygen(count_msgs, &params);
            let msgs = FieldElementVector::random(count_msgs);
            let sig = Signature::new_deterministic(msgs.as_slice(), &sk).unwrap();
            assert!(sig.verify(msgs.as_slice(), &vk, &params).unwrap());
        }
    }
}