1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! Tactics for Logical AND.

#![allow(unreachable_code)]

use crate::*;

/// `a ∧ b  =>  b ∧ a`.
pub fn symmetry<A: Prop, B: Prop>((f0, f1): And<A, B>) -> And<B, A> {
    (f1, f0)
}

/// `(a ∧ b) ∧ c  =>  a ∧ (b ∧ c)`.
pub fn assoc<A: Prop, B: Prop, C: Prop>(
    ((x0, x1), x2): And<And<A, B>, C>
) -> And<A, And<B, C>> {
    (x0, (x1, x2))
}

/// `a ∧ (b ∧ c)  =>  (a ∧ b) ∧ c`.
pub fn rev_assoc<A: Prop, B: Prop, C: Prop>(
    (x0, (x1, x2)): And<A, And<B, C>>
) -> And<And<A, B>, C> {
    ((x0, x1), x2)
}

/// `a ∧ (b ∨ c)  =>  (a ∧ b) ∨ (a ∧ c)`.
pub fn distrib<A: Prop, B: Prop, C: Prop>(
    (a, x): And<A, Or<B, C>>
) -> Or<And<A, B>, And<A, C>> {
    match x {
        Left(b) => Left((a, b)),
        Right(c) => Right((a, c)),
    }
}

/// `(a ∧ b) ∨ (a ∧ c)  =>  a ∧ (b ∨ c)`.
pub fn rev_distrib<A: Prop, B: Prop, C: Prop>(
    x: Or<And<A, B>, And<A, C>>
) -> And<A, Or<B, C>> {
    match x {
        Left((a, b)) => (a, Left(b)),
        Right((a, c)) => (a, Right(c)),
    }
}

/// `¬a ∧ (a ∨ b)  =>  b`.
pub fn exc_left<A: Prop, B: Prop>((not_a, x): And<Not<A>, Or<A, B>>) -> B {
    match x {
        Left(a) => match not_a(a) {},
        Right(b) => b
    }
}

/// `¬b ∧ (a ∨ b)  =>  a`
pub fn exc_right<A: Prop, B: Prop>(
    (not_b, x): And<Not<B>, Or<A, B>>
) -> A {
    match x {
        Left(a) => a,
        Right(b) => match not_b(b) {},
    }
}

/// `(¬a ∧ ¬b) ∧ (a ∨ b)  =>  false`
pub fn exc_both<A: Prop, B: Prop>(
    ((not_a, not_b), x): And<And<Not<A>, Not<B>>, Or<A, B>>
) -> False {
    match x {
        Left(a) => match not_a(a) {},
        Right(b) => match not_b(b) {},
    }
}

/// `¬(a ∨ b)  =>  (¬a ∧ ¬b)`.
pub fn from_de_morgan<A: Prop, B: Prop>(f: Not<Or<A, B>>) -> And<Not<A>, Not<B>> {
    let f2 = f.clone();
    (
        Rc::new(move |a| f(Left(a))),
        Rc::new(move |b| f2(Right(b))),
    )
}

/// `(¬a ∧ ¬b)  =>  ¬(a ∨ b)`.
pub fn to_de_morgan<A: Prop, B: Prop>((f0, f1): And<Not<A>, Not<B>>) -> Not<Or<A, B>> {
    Rc::new(move |or_ab| match or_ab {
        Left(a) => match f0(a) {},
        Right(b) => match f1(b) {},
    })
}

/// `(false ∧ a)  =>  false`.
pub fn false_arg<A: Prop>((x, _): And<False, A>) -> False {x}

/// `(true ∧ a)  =>  a`.
pub fn true_arg<A: Prop>((_, x): And<True, A>) -> A {x}

/// `(a ∧ b) ∧ (a => c)  =>  (c ∧ b)`.
pub fn in_left_arg<A: Prop, B: Prop, C: Prop>(
    (x, y): And<A, B>, g: Imply<A, C>
) -> And<C, B> {
    (g(x), y)
}

/// `(a ∧ b) ∧ (b => c)  =>  (a ∧ c)`.
pub fn in_right_arg<A: Prop, B: Prop, C: Prop>(
    (x, y): And<A, B>, g: Imply<B, C>
) -> And<A, C> {
    (x, g(y))
}

/// Makes it easier to traverse.
pub fn in_left<A: Prop, B: Prop, C: Prop, F>(
    (x, y): And<A, B>, f: F
) -> And<C, B> where F: Fn(A) -> C {
    (f(x), y)
}

/// Makes it easier to traverse.
pub fn in_right<A: Prop, B: Prop, C: Prop, F>(
    (x, y): And<A, B>, f: F
) -> And<A, C> where F: Fn(B) -> C {
    (x, f(y))
}

/// `(a == b)  =>  (a ∧ c) == (b ∧ c)`.
pub fn eq_left<A: Prop, B: Prop, C: Prop>((ab, ba): Eq<A, B>) -> Eq<And<A, C>, And<B, C>> {
    (Rc::new(move |(a, c)| (ab(a), c)), Rc::new(move |(b, c)| (ba(b), c)))
}

/// `(a == b)  =>  (c ∧ a) == (c ∧ b)`.
pub fn eq_right<A: Prop, B: Prop, C: Prop>((ab, ba): Eq<A, B>) -> Eq<And<C, A>, And<C, B>> {
    (Rc::new(move |(c, a)| (c, ab(a))), Rc::new(move |(c, b)| (c, ba(b))))
}

/// `¬c  =>  (a ∧ c) == (b ∧ c)`.
pub fn eq_left_false<A: Prop, B: Prop, C: Prop>(nc: Not<C>) -> Eq<And<A, C>, And<B, C>> {
    let x = imply::in_left(nc.clone(), |(_, c)| c);
    let y = imply::in_left(nc, |(_, c)| c);
    to_eq_neg((x, y))
}

/// `¬c  =>  (c ∧ a) == (c ∧ b)`.
pub fn eq_right_false<A: Prop, B: Prop, C: Prop>(nc: Not<C>) -> Eq<And<C, A>, And<C, B>> {
    let x = imply::in_left(nc.clone(), |(c, _)| c);
    let y = imply::in_left(nc, |(c, _)| c);
    to_eq_neg((x, y))
}

/// `((a ∧ c) == (b ∧ c)) ∧ c  =>  (a == b)`.
pub fn rev_eq_left_true<A: Prop, B: Prop, C: Prop>(
    (f, g): Eq<And<A, C>, And<B, C>>,
    c: C
) -> Eq<A, B> {
    let c2 = c.clone();
    (Rc::new(move |a| f((a, c.clone())).0), Rc::new(move |b| g((b, c2.clone())).0))
}

/// `((c ∧ a) == (c ∧ b)) ∧ c  =>  (a == b)`.
pub fn rev_eq_right_true<A: Prop, B: Prop, C: Prop>(
    (f, g): Eq<And<C, A>, And<C, B>>,
    c: C
) -> Eq<A, B> {
    let c2 = c.clone();
    (Rc::new(move |a| f((c.clone(), a)).1), Rc::new(move |b| g((c2.clone(), b)).1))
}

/// `¬(a => b)  =>  (a ∧ ¬b)`.
pub fn from_imply<A: DProp, B: Prop>(f: Not<Imply<A, B>>) -> And<A, Not<B>> {
    // `(¬a ∨ b)  =>  (a => b)`
    let f2 = Rc::new(move |x| imply::from_or(x));
    // `¬(¬a ∨ b)`
    let g = imply::rev_modus_ponens(f2, f);
    // `¬¬a ∧ ¬b`
    let h = from_de_morgan(g);
    and::in_left_arg(h, Rc::new(move |x| not::rev_double(x)))
}

/// `(a ∧ ¬b)  =>  ¬(a => b)`.
pub fn to_imply<A: Prop, B: Prop>((a, nb): And<A, Not<B>>) -> Not<Imply<A, B>> {
    Rc::new(move |ab| nb.clone()(ab(a.clone())))
}

/// `(a ∧ b)  =>  (a == b)`.
pub fn to_eq_pos<A: Prop, B: Prop>((f0, f1): And<A, B>) -> Eq<A, B> {
    (f1.map_any(), f0.map_any())
}

/// `(¬a ∧ ¬b)  =>  (a == b)`.
pub fn to_eq_neg<A: Prop, B: Prop>((f0, f1): And<Not<A>, Not<B>>) -> Eq<A, B> {
    (Rc::new(move |x| match f0.clone()(x) {}), Rc::new(move |x| match f1.clone()(x) {}))
}

/// `(a ∧ b) => (a ∨ b)`.
pub fn to_or<A: Prop, B: Prop>((x, _): And<A, B>) -> Or<A, B> {Left(x)}

/// `(a ∧ ¬a) => false`.
pub fn paradox<A: Prop>((a, na): And<A, Not<A>>) -> False {na(a)}

/// `(¬¬a ∧ ¬a) => false`.
pub fn paradox_e<A: Prop>((nna, na): And<Not<Not<A>>, Not<A>>) -> False {nna(na)}

/// `(a ∧ b) => a`.
pub fn fst<A: Prop, B: Prop>((a, _): And<A, B>) -> A {a}

/// `(a ∧ b) => b`.
pub fn snd<A: Prop, B: Prop>((_, b): And<A, B>) -> B {b}