1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
//! Tactics for Logical EQ.

#![allow(unreachable_code)]

use crate::*;

/// `(a == b) ∧ (b == c) => (a == c)`.
pub fn transitivity<A: Prop, B: Prop, C: Prop>((f0, f1): Eq<A, B>, (g0, g1): Eq<B, C>) -> Eq<A, C> {
    (Rc::new(move |x| g0(f0(x))), Rc::new(move |x| f1(g1(x))))
}

/// `(a == b) ∧ (b == c) ∧ (c == d)  =>  (a == d)`.
pub fn trans3<A: Prop, B: Prop, C: Prop, D: Prop>(
    ab: Eq<A, B>,
    bc: Eq<B, C>,
    cd: Eq<C, D>
) -> Eq<A, D> {transitivity(ab, transitivity(bc, cd))}

/// `(a == b) ∧ (b == c) ∧ (c == d) ∧ (d == e)  =>  (a == e)`.
pub fn trans4<A: Prop, B: Prop, C: Prop, D: Prop, E: Prop>(
    ab: Eq<A, B>,
    bc: Eq<B, C>,
    cd: Eq<C, D>,
    de: Eq<D, E>
) -> Eq<A, E> {transitivity(trans3(ab, bc, cd), de)}

/// `(a == b) ∧ (b == c) ∧ (c == d) ∧ (d == e) ∧ (e == f)  =>  (a == f)`.
pub fn trans5<A: Prop, B: Prop, C: Prop, D: Prop, E: Prop, F: Prop>(
    ab: Eq<A, B>,
    bc: Eq<B, C>,
    cd: Eq<C, D>,
    de: Eq<D, E>,
    ef: Eq<E, F>,
) -> Eq<A, F> {transitivity(trans4(ab, bc, cd, de), ef)}

/// `a => (a == ¬¬a)`.
pub fn double_neg<A: Prop>(a: A) -> Eq<A, Not<Not<A>>> {
    let double_neg = a.double_neg();
    (Rc::new(move |x| not::double(x)), Rc::new(move |x| double_neg(x)))
}

/// `(a == b) => (b == a)`.
pub fn symmetry<A: Prop, B: Prop>((f0, f1): Eq<A, B>) -> Eq<B, A> {
    (f1, f0)
}

/// `¬(a == b) => ¬(b == a)`.
pub fn neq_symmetry<A: Prop, B: Prop>(neq: Not<Eq<A, B>>) -> Not<Eq<B, A>> {
    Rc::new(move |eq| neq(symmetry(eq)))
}

/// `(a => b) = (¬a ∨ b)`.
pub fn imply_to_or_da<A: DProp, B: Prop>() -> Eq<Imply<A, B>, Or<Not<A>, B>> {
    (Rc::new(move |x| imply::to_or_da(x)), Rc::new(move |x| imply::from_or(x)))
}

/// `(a => b) = (¬a ∨ b)`.
pub fn imply_to_or_db<A: Prop, B: DProp>() -> Eq<Imply<A, B>, Or<Not<A>, B>> {
    (Rc::new(move |x| imply::to_or_db(x)), Rc::new(move |x| imply::from_or(x)))
}

/// `a == a`.
pub fn refl<A: Prop>() -> Eq<A, A> {
    (Rc::new(move |x| x), Rc::new(move |x| x))
}

/// `(a == ¬a) => false`.
pub fn anti<A: Prop>((f0, f1): Eq<A, Not<A>>) -> False {
    let na: Not<A> = Rc::new(move |a| f0(a.clone())(a));
    let a = f1(na.clone());
    na(a)
}

/// There is an `a : A` is the same as `A` being true.
///
/// With other words, a proof means it is true,
/// and if it is true then there is a proof.
pub fn true_eq<A: Prop>(a: A) -> Eq<A, True> {
    (True.map_any(), Rc::new(move |_| a.clone()))
}

/// `(a == b) => (¬b == ¬a)`
pub fn modus_tollens<A: Prop, B: Prop>((f0, f1): Eq<A, B>) -> Eq<Not<B>, Not<A>> {
    let f02 = imply::modus_tollens(f0);
    let f12 = imply::modus_tollens(f1);
    (f02, f12)
}

/// `(¬a == ¬b) => (b == a)`.
pub fn rev_modus_tollens<A: DProp, B: DProp>((f0, f1): Eq<Not<A>, Not<B>>) -> Eq<B, A> {
    let f02 = imply::rev_modus_tollens(f0);
    let f12 = imply::rev_modus_tollens(f1);
    (f02, f12)
}

/// `(¬a == ¬b) ∧ (a ∨ ¬a) ∧ (b ∨ ¬b)  =>  (b == a)`.
pub fn rev_modus_tollens_excm<A: Prop, B: Prop>(
    (f0, f1): Eq<Not<A>, Not<B>>,
    excm_a: ExcM<A>,
    excm_b: ExcM<B>,
) -> Eq<B, A> {
    let f02 = imply::rev_modus_tollens_excm(f0, excm_b.clone(), excm_a.clone());
    let f12 = imply::rev_modus_tollens_excm(f1, excm_a, excm_b);
    (f02, f12)
}

/// `(¬a == ¬b) ∧ ((a ∨ ¬a) == (b ∨ ¬b))  =>  (b == a)`.
pub fn rev_modus_tollens_eq_excm<A: Prop, B: Prop>(
    (f0, f1): Eq<Not<A>, Not<B>>,
    eq_excm_a_excm_b: Eq<ExcM<A>, ExcM<B>>,
) -> Eq<B, A> {
    let f02 = imply::rev_modus_tollens_eq_excm(f0, eq::symmetry(eq_excm_a_excm_b.clone()));
    let f12 = imply::rev_modus_tollens_eq_excm(f1, eq_excm_a_excm_b);
    (f02, f12)
}

/// `(¬a == ¬b) ∧ (a => (b ∨ ¬b)) ∧ (b => (b ∨ ¬b))  =>  (b == a)`.
pub fn rev_modus_tollens_imply_excm<A: Prop, B: Prop>(
    (f0, f1): Eq<Not<A>, Not<B>>,
    a_excm_b: Imply<A, ExcM<B>>,
    b_excm_a: Imply<B, ExcM<A>>,
) -> Eq<B, A> {
    let f02 = imply::rev_modus_tollens_imply_excm(f0, b_excm_a);
    let f12 = imply::rev_modus_tollens_imply_excm(f1, a_excm_b);
    (f02, f12)
}

/// `(true == a) => a`.
pub fn is_true<A: Prop>((f0, _): Eq<True, A>) -> A {
    f0(True)
}

/// `(false == a) => ¬a`.
pub fn is_false<A: Prop>((_, f1): Eq<False, A>) -> Not<A> {
    f1
}

/// `¬a => (a == false)`.
pub fn to_eq_false<A: Prop>(n_a: Not<A>) -> Eq<A, False> {
    (n_a, imply::absurd())
}

/// `¬(a == b) ∧ a  =>  ¬b`.
pub fn contra<A: Prop, B: DProp>(f: Not<Eq<A, B>>, a: A) -> Not<B> {
    contra_excm(f, a, B::decide())
}

/// `¬(a == b) ∧ a  =>  ¬b`.
pub fn contra_excm<A: Prop, B: Prop>(
    f: Not<Eq<A, B>>,
    a: A,
    excm_b: ExcM<B>
) -> Not<B> {
    match excm_b {
        Left(b) => not::absurd(f, and::to_eq_pos((a, b))),
        Right(not_b) => not_b,
    }
}

/// `(a == b) == c  =>  a => (b == c)`
pub fn assoc_right<A: DProp, B: DProp, C: DProp>((f0, f1): Eq<Eq<A, B>, C>) -> Imply<A, Eq<B, C>> {
    match (A::decide(), C::decide()) {
        (Right(not_a), _) => Rc::new(move |x| match not_a.clone()(x) {}),
        (_, Left(c)) =>
            Rc::new(move |x| (c.clone().map_any(), f1.clone()(c.clone()).0(x).map_any())),
        (Left(a), Right(not_c)) => {
            // `!(a = b)`
            let g = imply::rev_modus_ponens(f0, not_c.clone());
            let not_b = eq::contra(g, a);
            and::to_eq_neg((not_b, not_c)).map_any()
        }
    }
}

/// `(a == b) == c  =>  (b == c) => a`.
pub fn assoc_left<A: DProp, B: DProp, C: DProp>((f0, f1): Eq<Eq<A, B>, C>) -> Imply<Eq<B, C>, A> {
    match (A::decide(), B::decide(), C::decide()) {
        (Left(a), _, _) => a.map_any(),
        (Right(not_a), Right(not_b), Right(not_c)) =>
            match not_c(f0(and::to_eq_neg((not_a, not_b)))) {},
        (_, Left(b), Right(not_c)) =>
            Rc::new(move |(fb, _)| match not_c.clone()(fb(b.clone())) {}),
        (_, Right(not_b), Left(c)) =>
            Rc::new(move |(_, fc)| match not_b.clone()(fc(c.clone())) {}),
        (Right(not_a), Left(b), Left(c)) => {
            // `a = b`.
            let (_, g1) = f1(c);
            let a = g1(b);
            match not_a(a) {}
        }
    }
}

/// `(a == b) == c  =>  a == (b == c)`.
pub fn assoc<A: DProp, B: DProp, C: DProp>(f: Eq<Eq<A, B>, C>) -> Eq<A, Eq<B, C>> {
    (assoc_right(f.clone()), assoc_left(f))
}

/// `a == (b == c)  =>  a == (c == b)`.
pub fn swap_right<A: Prop, B: Prop, C: Prop>((f0, f1): Eq<A, Eq<B, C>>) -> Eq<A, Eq<C, B>> {
    (Rc::new(move |x| {let (g0, g1) = f0(x); (g1, g0)}),
     Rc::new(move |(g1, g0)| f1((g0, g1))))
}

/// `(a == b) == c  =>  (b == a) == c`.
pub fn swap_left<A: Prop, B: Prop, C: Prop>(f: Eq<Eq<A, B>, C>) -> Eq<Eq<B, A>, C> {
    symmetry(swap_right(symmetry(f)))
}

/// `(a == b) ∧ (a == c)  =>  (c == b)`
pub fn in_left_arg<A: Prop, B: Prop, C: Prop>(f: Eq<A, B>, g: Eq<A, C>) -> Eq<C, B> {
    symmetry(transitivity(symmetry(f), g))
}

/// See transitivity.
pub fn in_right_arg<A: Prop, B: Prop, C: Prop>(f: Eq<A, B>, g: Eq<B, C>) -> Eq<A, C> {
    transitivity(f, g)
}

/// Makes it easier to traverse.
pub fn in_left<A: Prop, B: Prop, C: Prop, F, G>(
    eq_ab: Eq<A, B>,
    f: F,
    g: G,
) -> Eq<C, B>
    where F: Fn(A) -> C + 'static,
          G: Fn(C) -> A + 'static
{in_left_arg(eq_ab, (Rc::new(f), Rc::new(g)))}

/// Makes it easier to traverse.
pub fn in_right<A: Prop, B: Prop, C: Prop, F, G>(
    eq_ab: Eq<A, B>,
    f: F,
    g: G,
) -> Eq<A, C>
    where F: Fn(B) -> C + 'static,
          G: Fn(C) -> B + 'static
{eq::symmetry(in_left(eq::symmetry(eq_ab), f, g))}

/// `(a == b)  =>  (a == c) == (b == c)`.
pub fn eq_left<A: Prop, B: Prop, C: Prop>(x: Eq<A, B>) -> Eq<Eq<A, C>, Eq<B, C>> {
    let x2 = symmetry(x.clone());
    (Rc::new(move |ac| in_left_arg(ac, x.clone())),
     Rc::new(move |bc| in_left_arg(bc, x2.clone())))
}

/// `(a == b)  =>  (c == a) == (c == b)`.
pub fn eq_right<A: Prop, B: Prop, C: Prop>(x: Eq<A, B>) -> Eq<Eq<C, A>, Eq<C, B>> {
    let x2 = symmetry(x.clone());
    (Rc::new(move |ac| in_right_arg(ac, x.clone())),
     Rc::new(move |bc| in_right_arg(bc, x2.clone())))
}

/// `(a == b) == (b == a)`.
pub fn symmetry_eq<A: Prop, B: Prop>() -> Eq<Eq<A, B>, Eq<B, A>> {
    (Rc::new(move |x| eq::symmetry(x)),
     Rc::new(move |x| eq::symmetry(x)))
}

/// `((a == b) == c)  ==  (a == (b == c))`.
pub fn assoc_eq<A: DProp, B: DProp, C: DProp>() -> Eq<Eq<Eq<A, B>, C>, Eq<A, Eq<B, C>>> {
    (Rc::new(move |x| eq::assoc(x)), Rc::new(move |x| {
        let x2 = eq::symmetry(x);
        let x3 = eq::in_left_arg(x2, symmetry_eq());
        let x4 = eq::assoc(x3);
        let x5 = eq::symmetry(x4);
        eq::in_left_arg(x5, symmetry_eq())
    }))
}

/// `(a == b) == (c == d)  =>  (a == c) == (b == d)`.
pub fn transpose<A: DProp, B: DProp, C: DProp, D: DProp>(
    f: Eq<Eq<A, B>, Eq<C, D>>
) -> Eq<Eq<A, C>, Eq<B, D>> {
    let f = eq::in_left_arg(f, eq::symmetry_eq());
    let f = eq::in_right_arg(f, eq::symmetry_eq());
    let f = eq::assoc(f);
    let f = eq::in_right_arg(f, eq::symmetry_eq());
    let f = eq::in_right_arg(f, eq::assoc_eq());
    let f = eq::symmetry(f);
    let f = eq::assoc(f);
    let f = eq::symmetry(f);
    let f = eq::assoc(f);
    eq::in_left_arg(f, eq::symmetry_eq())
}

/// `(a == b) = (c == b)  =>  (a == c)`.
pub fn triangle<A: DProp, B: DProp, C: DProp>(f: Eq<Eq<A, B>, Eq<C, B>>) -> Eq<A, C> {
    let f = eq::transpose(f);
    f.1(eq::refl())
}

/// `¬(a == b) = ¬(c == b)  =>  (a == c)`.
pub fn inv_triangle<A: DProp, B: DProp, C: DProp>(
    f: Eq<Not<Eq<A, B>>, Not<Eq<C, B>>>
) -> Eq<A, C> {
    let f = eq::rev_modus_tollens(f);
    let f = eq::symmetry(f);
    eq::triangle(f)
}

/// `false == false`.
pub fn absurd() -> Eq<False, False> {
    (imply::absurd(), imply::absurd())
}

/// `(a == b) ⋀ ¬(a == c) => ¬(b == c)`.
pub fn neq_left<A: Prop, B: Prop, C: Prop>(
    eq_ab: Eq<A, B>,
    neq_ac: Not<Eq<A, C>>
) -> Not<Eq<B, C>> {
    Rc::new(move |eq_bc| neq_ac(transitivity(eq_ab.clone(), eq_bc)))
}

/// `(a == b) ⋀ ¬(b == c) => ¬(a == c)`.
pub fn neq_right<A: Prop, B: Prop, C: Prop>(
    eq_ab: Eq<A, B>,
    neq_bc: Not<Eq<B, C>>
) -> Not<Eq<A, C>> {
    Rc::new(move |eq_ac| neq_bc(transitivity(symmetry(eq_ab.clone()), eq_ac)))
}

/// `¬(a == b)  =>  ¬(a ⋀ b)`.
pub fn neq_to_nand<A: Prop, B: Prop>(neq: Not<Eq<A, B>>) -> Not<And<A, B>> {
    Rc::new(move |(a, b)| neq((b.map_any(), a.map_any())))
}

/// `¬(a == b)  =>  (a == ¬b)`.
pub fn neq_to_eq_not<A: DProp, B: DProp>(x: Not<Eq<A, B>>) -> Eq<A, Not<B>> {
    let x2 = x.clone();
    (Rc::new(move |a| {
        let x = x2.clone();
        Rc::new(move |b| x.clone()((b.map_any(), a.clone().map_any())))
     }),
     Rc::new(move |nb| match A::decide() {
         Left(a) => a,
         Right(na) => not::absurd(x.clone(), eq::rev_modus_tollens((na.map_any(), nb.map_any()))),
     }))
}

/// `(a == ¬b) => ¬(a == b)`.
pub fn eq_not_to_neq<A: Prop, B: Prop>(f: Eq<A, Not<B>>) -> Not<Eq<A, B>> {
    Rc::new(move |eq_ab| anti(in_left_arg(f.clone(), eq_ab)))
}

/// `(a == b) => ((a ⋁ ¬a) == (b ⋁ ¬b))`.
pub fn eq_to_eq_excm<A: Prop, B: Prop>(x: Eq<A, B>) -> Eq<ExcM<A>, ExcM<B>> {
    let x2 = x.clone();
    (
        Rc::new(move |excm_a| {
            let x = x2.clone();
            match excm_a {
                Left(a) => Left(x.0(a)),
                Right(na) => Right(eq::modus_tollens(x).1(na)),
            }
        }),
        Rc::new(move |excm_b| {
            let x = x.clone();
            match excm_b {
                Left(b) => Left(x.1(b)),
                Right(nb) => Right(eq::modus_tollens(x).0(nb)),
            }
        })
    )
}