1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
//! # Functional programming as propositions
//!
//! Model is derived from PSQ, PSI and HOOO EP.
//!
//! ### Types
//!
//! A type `x : T` uses `Ty<X, T>` from the `path_semantics` module (PSI).
//!
//! A function type `f : X -> Y` uses `Ty<F, Pow<Y, X>>` from the `hooo` module (HOOO EP).
//!
//! A lambda/closure type `f : X => Y` uses `Ty<F, Imply<X, Y>>`.
//!
//! ### Imaginary Inverse
//!
//! The syntax `~x` uses `Qu<X>` from the `qubit` module,
//! and the syntax `x ~~ y` uses `Q<X, Y>` from the `quality` module.
//!
//! This model uses [imaginary inverse](https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/imaginary-inverse.pdf)
//! `inv(f)` with `~inv(f)` as a proof of bijective inverse.
//! Here, `~` means the path semantical qubit operator, such that:
//!
//! ```text
//! (inv(f) ~~ g) => ~inv(f)
//! ```
//!
//! It means that one uses path semantical quality instead of equality for inverses.
//! Path semantical quality `inv(f) ~~ g` also implies `inv(f) == g`,
//! which is useful in proofs.
//!
//! The `inv_val_qu` axiom makes it possible to compute using the inverse:
//!
//! `(~inv(f) ⋀ (f(x) == y)) => (inv(f)(y) == x)`
//!
//! The reason for this design is that `inv(f) == inv(f)` is a tautology,
//! and Rust's type system can't pattern match on 1-avatars with inequality in rules like in
//! [Avatar Logic](https://github.com/advancedresearch/avalog).
//!
//! By using a partial equivalence operator `~~` instead of `==`,
//! one can not prove `inv(f) ~~ inv(f)` without any assumptions.
//! This solves the problem such that axioms can be added,
//! only for functions that have inverses.
//!
//! If a function `f` has no inverse, it is useful to prove `false^(inv(f) ~~ g)`.
//!
//! ### Function Extensionality
//!
//! It is possible to prove the following (`fun_ext`):
//!
//! `(f == g)^true => fun_ext_ty(f, g)`
//!
//! However, the reverse is not possible to prove.
//!
//! By using path semantical quality, the `path` axiom makes it possible to get the inverse map:
//!
//! `~inv(f) ⋀ (f : x -> y) ⋀ (x -> y)  =>  f ⋀ inv(f)`
//!
//! Which proves (`path_inv`):
//!
//! `~inv(f) ⋀ (f : x -> y) ⋀ (x -> y)  =>  (y -> x)`
//!
//! This means, only `~inv(fun_ext(f, g))` needs to be added,
//! together with declaration of the type of function extensionality:
//!
//! `fun_ext(f, g) : (f == g)^true -> fun_ext_ty(f, g)`
//!
//! The `path` axiom might be thought of as collapsing the proof space of all
//! tautology transforms with inverses, together with the proof space of inverses.
//! With other words, it leverages PSI to say that any proof of `x -> y` is identical to having a
//! proof of `y -> x` when there exists an inverse and a proof `f : x -> y`.

use crate::*;
use path_semantics::{POrdProof, Ty};
use quality::Q;
use qubit::Qu;
use hooo::{Pow, Tauto};
use nat::{Nat, S, Z};

pub mod bool_alg;
pub mod hott;

/// `is_const(a) ⋀ is_const(b)  =>  is_const(a ⋀ b)`.
pub fn and_is_const<A: Prop, B: Prop>(_a: IsConst<A>, _b: IsConst<B>) -> IsConst<And<A, B>> {
    unimplemented!()
}
/// `is_const(a) ⋀ is_const(b)  =>  is_const(a ⋁ b)`.
pub fn or_is_const<A: Prop, B: Prop>(_a: IsConst<A>, _b: IsConst<B>) -> IsConst<Or<A, B>> {
    unimplemented!()
}
/// `is_const(a) ⋀ is_const(b)  =>  is_const(a => b)`.
pub fn imply_is_const<A: Prop, B: Prop>(_a: IsConst<A>, _b: IsConst<B>) -> IsConst<Imply<A, B>> {
    unimplemented!()
}
/// `is_const(a) ⋀ is_const(b)  =>  is_const(pord(a, b))`.
pub fn pord_is_const<A: Prop, B: Prop>(
    _a: IsConst<A>,
    _b: IsConst<B>
) -> IsConst<POrdProof<A, B>> {
    unimplemented!()
}

/// `is_const(a) ⋀ is_const(b)  =>  is_const(a : b)`.
pub fn ty_is_const<A: Prop, B: Prop>(a: IsConst<A>, b: IsConst<B>) -> IsConst<Ty<A, B>> {
    and_is_const(imply_is_const(a.clone(), b.clone()), pord_is_const(a, b))
}

/// `~f ⋀ (f == g)^true  =>  f ~~ g`.
pub fn qu_tauto_eq_to_q<F: Prop, G: Prop>(x: Qu<F>, tauto_eq: Tauto<Eq<F, G>>) -> Q<F, G> {
    (tauto_eq(True), (x.clone(), hooo::qu_in_arg(x, tauto_eq)))
}
/// `~f => ~inv(inv(f))`.
pub fn qu_double<F: Prop>(x: Qu<F>) -> Qu<Inv<Inv<F>>> {
    qu_tauto_eq_to_q(x, hooo::pow_eq_to_tauto_eq((involve_inv, inv_involve))).1.1
}
/// `~inv(inv(f)) => ~f`.
pub fn qu_rev_double<F: Prop>(x: Qu<Inv<Inv<F>>>) -> Qu<F> {
    qu_tauto_eq_to_q(x, hooo::pow_eq_to_tauto_eq((inv_involve, involve_inv))).1.1
}
/// `~inv(f) ⋀ (f == g)^true  =>  ~inv(g)`.
pub fn qu_inv_tauto_eq_to_qu_inv<F: Prop, G: Prop>(
    x: Qu<Inv<F>>,
    tauto_eq: Tauto<Eq<F, G>>
) -> Qu<Inv<G>> {qu_tauto_eq_to_q(x, hooo::pow_transitivity(tauto_eq, inv_eq)).1.1}
/// `inv(inv(f))(x) == f(x)`.
pub fn inv_double_val<F: Prop, X: Prop>() -> Eq<App<Inv<Inv<F>>, X>, App<F, X>> {
    app_map_eq(involve_eq())
}
/// `f ~~ g  =>  inv(f) ~~ inv(g)`.
pub fn q_inv<F: Prop, G: Prop>((eq_fg, (qu_f, qu_g)): Q<F, G>) -> Q<Inv<F>, Inv<G>> {
    (inv_eq(eq_fg), (inv_qu(qu_f), inv_qu(qu_g)))
}
/// `inv(f) ~~ g  =>  f ~~ inv(g)`.
pub fn q_adjoint_left<F: Prop, G: Prop>(x: Q<Inv<F>, G>) -> Q<F, Inv<G>> {
    hooo::q_in_left_arg(q_inv(x), hooo::pow_eq_to_tauto_eq((inv_involve, involve_inv)))
}
/// `f ~~ inv(g)  =>  inv(f) ~~ g`.
pub fn q_adjoint_right<F: Prop, G: Prop>(x: Q<F, Inv<G>>) -> Q<Inv<F>, G> {
    quality::symmetry(q_adjoint_left(quality::symmetry(x)))
}
/// `inv(f) ~~ g  ==  f ~~ inv(g)`.
pub fn q_adjoint<F: Prop, G: Prop>() -> Eq<Q<Inv<F>, G>, Q<F, Inv<G>>> {
    hooo::pow_eq_to_tauto_eq((q_adjoint_left, q_adjoint_right))(True)
}
/// `~inv(f)  =>  (f(a) == b) == (inv(f)(b) == a)`.
pub fn qu_to_app_eq<A: Prop, B: Prop, F: Prop>(
    x: Qu<Inv<F>>
) -> Eq<Eq<App<F, A>, B>, Eq<App<Inv<F>, B>, A>> {
    let qu_inv_inv_f: Qu<Inv<Inv<F>>> = inv_qu(x.clone());

    (Rc::new(move |y| inv_val_qu(x.clone(), y)),
     Rc::new(move |y|
        eq::in_left_arg(inv_val_qu(qu_inv_inv_f.clone(), y), app_map_eq(involve_eq()))))
}

/// Apply 2 function arguments.
pub type App2<F, X, Y> = App<App<F, X>, Y>;

/// Applied function.
#[derive(Clone)]
pub struct App<F: Prop, X: Prop>(F, X);

/// `is_const(f) ⋀ is_const(x)  =>  is_const(f(x))`.
pub fn app_is_const<F: Prop, X: Prop>(_f: IsConst<F>, _x: IsConst<X>) -> IsConst<App<F, X>> {
    unimplemented!()
}
/// Indiscernibility of identicals (Leibniz's law).
pub fn app_eq<F: Prop, X: Prop, Y: Prop>(
    _eq_xy: Eq<X, Y>
) -> Eq<App<F, X>, App<F, Y>> {unimplemented!()}
/// Lift equality of maps to application.
pub fn app_map_eq<F: Prop, G: Prop, X: Prop>(
    _eq_fg: Eq<F, G>
) -> Eq<App<F, X>, App<G, X>> {unimplemented!()}
/// Get type of applied function.
pub fn app_fun_ty<F: Prop, X: Prop, Y: Prop, A: Prop>(
    _ty_f: Ty<F, Pow<Y, X>>,
    _ty_a: Ty<A, X>,
    _x_is_const: IsConst<X>,
) -> Ty<App<F, A>, Y> {
    unimplemented!()
}
/// `(f : (x => y)) ⋀ (a : x)  =>  (f(a) : y)`.
///
/// Get type of applied lambda.
pub fn app_lam_ty<F: Prop, X: Prop, Y: Prop, A: Prop>(
    _ty_f: Ty<F, Imply<X, Y>>,
    _ty_a: Ty<A, X>,
    _x_is_const: IsConst<X>,
) -> Ty<App<F, A>, Y> {
    unimplemented!()
}
/// `((\(a : x) = b) : (x => y)) ⋀ (a : x) ⋀ (b : y) ⋀ (c : x)  =>  (f(a) : y[a := c])`.
///
/// Get type of applied lambda.
pub fn app_dep_lam_ty<F: Prop, X: Prop, Y: Prop, A: Prop, B: Prop, C: Prop>(
    _ty_f: Ty<Lam<Ty<A, X>, B>, Imply<X, Y>>,
    _ty_a: Ty<A, X>,
    _ty_b: Ty<B, Y>,
    _ty_c: Ty<C, X>,
) -> Ty<App<F, C>, Subst<Y, A, C>> {
    unimplemented!()
}

/// Get type of applied binary operator.
pub fn app2_fun_ty<F: Prop, X: Prop, Y: Prop, Z: Prop, A: Prop, B: Prop>(
    ty_f: Ty<F, Pow<Pow<Z, Y>, X>>,
    ty_a: Ty<A, X>,
    ty_b: Ty<B, Y>,
    x_is_const: IsConst<X>,
    y_is_const: IsConst<Y>,
) -> Ty<App2<F, A, B>, Z> {
    app_fun_ty(app_fun_ty(ty_f, ty_a, x_is_const), ty_b, y_is_const)
}
/// Get type of applied binary operator.
pub fn app2_lam_ty<F: Prop, X: Prop, Y: Prop, Z: Prop, A: Prop, B: Prop>(
    ty_f: Ty<F, Imply<X, Imply<Y, Z>>>,
    ty_a: Ty<A, X>,
    ty_b: Ty<B, Y>,
    x_is_const: IsConst<X>,
    y_is_const: IsConst<Y>,
) -> Ty<App2<F, A, B>, Z> {
    app_lam_ty(app_lam_ty(ty_f, ty_a, x_is_const), ty_b, y_is_const)
}

/// `(f(a) == b) ⋀ (a : x) ⋀ (b : y)  =>  (\(a : x) = f(a)) : (x => y)`.
pub fn app_lift_ty_lam<F: Prop, A: Prop, B: Prop, X: Prop, Y: Prop>(
    x: Eq<App<F, A>, B>,
    ty_a: Ty<A, X>,
    ty_b: Ty<B, Y>,
) -> Ty<Lam<Ty<A, X>, App<F, A>>, Imply<X, Y>> {
    lam_ty(ty_a, path_semantics::ty_in_left_arg(ty_b, eq::symmetry(x)))
}

/// Imaginary inverse.
#[derive(Clone)]
pub struct Inv<F: Prop>(F);

/// Inverse type `(f : x -> y) => (inv(f) : y -> x)`.
pub fn inv_ty<F: Prop, X: Prop, Y: Prop>(
    _ty_f: Ty<F, Pow<Y, X>>
) -> Ty<Inv<F>, Pow<X, Y>> {unimplemented!()}
/// `is_const(f) => is_const(inv(f))`.
pub fn inv_is_const<F: Prop>(_a: IsConst<F>) -> IsConst<Inv<F>> {unimplemented!()}
/// Get inverse map of `f` if there exists a proof `~inv(f)`.
pub fn inv_val_qu<F: Prop, A: Prop, B: Prop>(
    _: Qu<Inv<F>>,
    _: Eq<App<F, A>, B>
) -> Eq<App<Inv<F>, B>, A> {unimplemented!()}
/// `inv(inv(f)) => f`.
pub fn inv_involve<F: Prop>(_: Inv<Inv<F>>) -> F {unimplemented!()}
/// `f => inv(inv(f))`.
pub fn involve_inv<F: Prop>(_: F) -> Inv<Inv<F>> {unimplemented!()}
/// `(f == g)  =>  inv(f) == inv(g)`.
pub fn inv_eq<F: Prop, G: Prop>(_: Eq<F, G>) -> Eq<Inv<F>, Inv<G>> {unimplemented!()}
/// `~f => ~inv(f)`.
pub fn inv_qu<F: Prop>(_: Qu<F>) -> Qu<Inv<F>> {unimplemented!()}
/// `~inv(f) ⋀ (f : x -> y) ⋀ (x -> y)  =>  f ⋀ inv(f)`.
///
/// This makes it possible to get inverse map for free.
pub fn path<F: Prop, X: Prop, Y: Prop>(
    _: Qu<Inv<F>>,
    _: Ty<F, Pow<Y, X>>,
    _: Pow<Y, X>
) -> And<F, Inv<F>> {unimplemented!()}

/// Get inverse map of `f` if there exists a proof `g`.
///
/// The proof needs to be path semantical quality,
/// since equality is reflexive and this leads to contradiction
/// if values are mutually exclusive.
pub fn inv_val<F: Prop, G: Prop, A: Prop, B: Prop>(
    x: Q<Inv<F>, G>,
    y: Eq<App<F, A>, B>
) -> Eq<App<Inv<F>, B>, A> {inv_val_qu(Qu::<Inv<F>>::from_q(quality::left(x)), y)}
/// Get inverse map of `f` by `g`.
pub fn inv_val_other<F: Prop, G: Prop, A: Prop, B: Prop>(
    x: Q<Inv<F>, G>,
    y: Eq<App<F, A>, B>
) -> Eq<App<G, B>, A> {
    eq::in_left_arg(inv_val(x.clone(), y), app_map_eq(quality::to_eq(x)))
}
/// `inv(inv(f)) == f`.
pub fn involve_eq<F: Prop>() -> Eq<Inv<Inv<F>>, F> {
    hooo::pow_eq_to_tauto_eq((inv_involve, involve_inv))(True)
}
/// `~inv(f) ⋀ (f : x -> y) ⋀ (x -> y)  =>  (y -> x)`.
pub fn path_inv<F: Prop, X: Prop, Y: Prop>(
    qu_inv_f: Qu<Inv<F>>,
    ty_f: Ty<F, Pow<Y, X>>,
    x: Pow<Y, X>
) -> Pow<X, Y> {
    use path_semantics::{ty_triv, ty_true};
    ty_true(ty_triv(inv_ty(ty_f.clone()), path(qu_inv_f, ty_f, x).1))
}

/// Composition.
#[derive(Clone)]
pub struct Comp<F: Prop, G: Prop>(F, G);

/// Type of composition.
pub fn comp_ty<F: Prop, G: Prop, X: Prop, Y: Prop, Z: Prop>(
    _ty_f: Ty<F, Pow<Y, X>>,
    _ty_g: Ty<G, Pow<Z, Y>>
) -> Ty<Comp<G, F>, Pow<Z, X>> {unimplemented!()}
/// `is_const(f) ⋀ is_const(g)  =>  is_const(g . f)`.
pub fn comp_is_const<F: Prop, G: Prop>(_a: IsConst<F>, _b: IsConst<G>) -> IsConst<Comp<G, F>> {
    unimplemented!()
}
/// `inv(g . f) => (inv(f) . inv(g))`.
pub fn inv_comp_to_comp_inv<F: Prop, G: Prop>(_: Inv<Comp<G, F>>) -> Comp<Inv<F>, Inv<G>> {
    unimplemented!()
}
/// `(inv(f) . inv(g)) => inv(g . f)`.
pub fn comp_inv_to_inv_comp<F: Prop, G: Prop>(_: Comp<Inv<F>, Inv<G>>) -> Inv<Comp<G, F>> {
    unimplemented!()
}
/// `g(f(x)) => (g . f)(x)`.
pub fn app_to_comp<F: Prop, G: Prop, X: Prop>(_: App<G, App<F, X>>) -> App<Comp<G, F>, X> {
    unimplemented!()
}
/// `(g . f)(x) => g(f(x))`.
pub fn comp_to_app<F: Prop, G: Prop, X: Prop>(_: App<Comp<G, F>, X>) -> App<G, App<F, X>> {
    unimplemented!()
}
/// `h . (g . f)  ==  (h . g) . f`.
pub fn comp_assoc<F: Prop, G: Prop, H: Prop>() -> Eq<Comp<H, Comp<G, F>>, Comp<Comp<H, G>, F>> {
    unimplemented!()
}
/// `id . f  ==  f`.
pub fn comp_id_left<F: Prop>() -> Eq<Comp<FId, F>, F> {unimplemented!()}
/// `f . id  ==  f`.
pub fn comp_id_right<F: Prop>() -> Eq<Comp<F, FId>, F> {unimplemented!()}

/// `(inv(f) . inv(g)) == inv(g . f)`.
pub fn comp_inv<F: Prop, G: Prop>() -> Eq<Comp<Inv<F>, Inv<G>>, Inv<Comp<G, F>>> {
    (hooo::pow_to_imply(comp_inv_to_inv_comp), hooo::pow_to_imply(inv_comp_to_comp_inv))
}
/// `(g . f)(x) == g(f(x))`.
pub fn eq_app_comp<F: Prop, G: Prop, X: Prop>() -> Eq<App<G, App<F, X>>, App<Comp<G, F>, X>> {
    (Rc::new(move |x| app_to_comp(x)), Rc::new(move |x| comp_to_app(x)))
}
/// `(g . f) ⋀ (g == h)  =>  (h . f)`.
pub fn comp_in_left_arg<F: Prop, G: Prop, H: Prop>(x: Comp<G, F>, y: Eq<G, H>) -> Comp<H, F> {
    Comp(y.0(x.0), x.1)
}
/// `(g . f) ⋀ (f == h)  =>  (g . h)`.
pub fn comp_in_right_arg<F: Prop, G: Prop, H: Prop>(x: Comp<G, F>, y: Eq<F, H>) -> Comp<G, H> {
    Comp(x.0, y.0(x.1))
}
/// `(f == h)  =>  (f . g) == (h . g)`.
pub fn comp_eq_left<F: Prop, G: Prop, H: Prop>(x: Eq<F, H>) -> Eq<Comp<F, G>, Comp<H, G>> {
    let x2 = eq::symmetry(x.clone());
    (Rc::new(move |fg| comp_in_left_arg(fg, x.clone())),
     Rc::new(move |hg| comp_in_left_arg(hg, x2.clone())))
}
/// `(g == h)  =>  (f . g) == (f . h)`.
pub fn comp_eq_right<F: Prop, G: Prop, H: Prop>(x: Eq<G, H>) -> Eq<Comp<F, G>, Comp<F, H>> {
    let x2 = eq::symmetry(x.clone());
    (Rc::new(move |fg| comp_in_right_arg(fg, x.clone())),
     Rc::new(move |fh| comp_in_right_arg(fh, x2.clone())))
}

/// Duplicate function.
#[derive(Clone, Copy)]
pub struct Dup(());

/// Type of Dup.
pub fn dup_ty<A: Prop>() -> Ty<Dup, Pow<Tup<A, A>, A>> {unimplemented!()}
/// is_const(dup).
pub fn dup_is_const() -> IsConst<Dup> {unimplemented!()}

/// Definition of Dup function.
pub fn dup_def<A: Prop>() -> Eq<App<Dup, A>, Tup<A, A>> {unimplemented!()}

/// Identity function.
#[derive(Clone, Copy)]
pub struct FId(());

/// Type of Id.
pub fn id_ty<A: Prop>() -> Ty<FId, Pow<A, A>> {unimplemented!()}
/// `is_const(id)`.
pub fn id_is_const() -> IsConst<FId> {unimplemented!()}

/// Definition of identity function.
pub fn id_def<A: Prop>() -> Eq<App<FId, A>, A> {unimplemented!()}
/// `inv(id) ~~ id`.
pub fn id_q() -> Q<Inv<FId>, FId> {unimplemented!()}
/// `(f . inv(f)) => id`.
pub fn comp_right_inv_to_id<F: Prop>(_: Comp<F, Inv<F>>) -> FId {unimplemented!()}
/// `id => (f . inv(f))`.
pub fn id_to_comp_right_inv<F: Prop>(_: FId) -> Comp<F, Inv<F>> {unimplemented!()}
/// `(inv(f) . f) => id`.
pub fn comp_left_inv_to_id<F: Prop>(_: Comp<Inv<F>, F>) -> FId {unimplemented!()}
/// `id => (inv(f). f)`.
pub fn id_to_comp_left_inv<F: Prop>(_: FId) -> Comp<Inv<F>, F> {unimplemented!()}

/// `(f : A -> B) => ((f ~~ inv(f)) : ((A -> B) ~~ (B -> A)))`.
pub fn self_inv_ty<F: Prop, A: Prop, B: Prop>(
    ty_f: Ty<F, Pow<B, A>>
) -> Ty<Q<F, Inv<F>>, Q<Pow<B, A>, Pow<A, B>>> {
    path_semantics::ty_q_formation(ty_f.clone(), inv_ty(ty_f))
}
/// `(inv(f) == f) => ((f . f) == id)`.
pub fn self_inv_to_eq_id<F: Prop>(eq_f: Eq<Inv<F>, F>) -> Eq<Comp<F, F>, FId> {
    let eq_f_2 = eq_f.clone();
    (
        Rc::new(move |x| comp_right_inv_to_id(
            comp_in_right_arg(x, eq::symmetry(eq_f_2.clone())))),
        Rc::new(move |x| comp_in_right_arg(id_to_comp_right_inv(x), eq_f.clone())),
    )
}

/// Cumulative type hierarchy.
#[derive(Copy, Clone)]
pub struct Type<N>(N);

impl<N: 'static + Clone> path_semantics::LProp for Type<N> {
    type N = N;
    type SetLevel<T: 'static + Clone> = Type<T>;
}

/// `type(n) => type(n+1)`.
pub fn type_imply<N: Nat>(Type(n): Type<N>) -> Type<S<N>> {Type(S(n))}
/// `is_const(type(n))`.
pub fn type_is_const<N: Nat>() -> IsConst<Type<N>> {unimplemented!()}
/// `(a -> b) : type(0)`.
pub fn pow_ty<A: Prop, B: Prop>() -> Ty<Pow<B, A>, Type<Z>> {unimplemented!()}

/// `type(n) : type(n+1)`.
pub fn type_ty<N: Nat>() -> Ty<Type<N>, Type<S<N>>> {
    (hooo::pow_to_imply(type_imply), POrdProof::new())
}
/// `(f : A -> B) ⋀ (inv(f) ~~ g) => ((f ~~ g) : ((A -> B) ~~ (B -> A)))`.
pub fn q_inv_ty<F: Prop, G: Prop, A: Prop, B: Prop>(
    ty_f: Ty<F, Pow<B, A>>,
    q: Q<Inv<F>, G>,
) -> Ty<Q<F, G>, Q<Pow<B, A>, Pow<A, B>>> {
    use quality::transitivity as trans;

    let y = self_inv_ty(ty_f);
    let q2 = q.clone();
    let x: Eq<Q<F, Inv<F>>, Q<F, G>> = (
        Rc::new(move |x| trans(x, q2.clone())),
        Rc::new(move |x| trans(x, quality::symmetry(q.clone())))
    );
    path_semantics::ty_in_left_arg(y, x)
}

/// Tuple.
#[derive(Clone)]
pub struct Tup<A, B>(A, B);

/// `(a : x) ⋀ (b : y)  =>  (a, b) : (x, y)`.
pub fn tup_ty<A: Prop, B: Prop, X: Prop, Y: Prop>(
    _ty_a: Ty<A, X>,
    _ty_b: Ty<B, Y>
) -> Ty<Tup<A, B>, Tup<X, Y>> {unimplemented!()}
/// `is_const(a) ⋀ is_const(b)  =>  is_const((a, b))`.
pub fn tup_is_const<A: Prop, B: Prop>(_a: IsConst<A>, _b: IsConst<B>) -> IsConst<Tup<A, B>> {
    unimplemented!()
}
/// `(a, b) : (x, y)  =>  (a : x)`.
pub fn tup_fst<A: Prop, B: Prop, X: Prop, Y: Prop>(_: Ty<Tup<A, B>, Tup<X, Y>>) -> Ty<A, X> {
    unimplemented!()
}
/// `(a, b) : (x, y)  =>  (b : y)`.
pub fn tup_snd<A: Prop, B: Prop, X: Prop, Y: Prop>(_: Ty<Tup<A, B>, Tup<X, Y>>) -> Ty<B, Y> {
    unimplemented!()
}
/// `(a == b)  =>  (a, c) == (b, c)`.
pub fn tup_eq_fst<A: Prop, B: Prop, C: Prop>((ab, ba): Eq<A, B>) -> Eq<Tup<A, C>, Tup<B, C>> {
    (Rc::new(move |y| Tup(ab(y.0), y.1)), Rc::new(move |y| Tup(ba(y.0), y.1)))
}
/// `(a == b)  =>  (c, a) == (c, b)`.
pub fn tup_eq_snd<A: Prop, B: Prop, C: Prop>((ab, ba): Eq<A, B>) -> Eq<Tup<C, A>, Tup<C, B>> {
    (Rc::new(move |y| Tup(y.0, ab(y.1))), Rc::new(move |y| Tup(y.0, ba(y.1))))
}
/// `(c : d) ⋀ ((a, c) == (b, c))  =>  (a == b)`.
pub fn tup_rev_eq_fst<A: Prop, B: Prop, C: Prop, D: Prop>(
    _: Ty<C, D>,
    _: Eq<Tup<A, C>, Tup<B, C>>
) -> Eq<A, B> {unimplemented!()}
/// `(c : d) ⋀ ((c, a) == (c, b))  =>  (a == b)`.
pub fn tup_rev_eq_snd<A: Prop, B: Prop, C: Prop, D: Prop>(
    _: Ty<C, D>,
    _: Eq<Tup<C, A>, Tup<C, B>>
) -> Eq<A, B> {unimplemented!()}

/// Tuple of 3 elements.
pub type Tup3<A, B, C> = Tup<A, Tup<B, C>>;

/// `(a, b, c) : (x, y, z)  =>  (a : x)`.
pub fn tup3_fst<A: Prop, B: Prop, C: Prop, X: Prop, Y: Prop, Z: Prop>(
    x: Ty<Tup3<A, B, C>, Tup3<X, Y, Z>>
) -> Ty<A, X> {tup_fst(x)}
/// `(a, b, c) : (x, y, z)  =>  (b : y)`.
pub fn tup3_snd<A: Prop, B: Prop, C: Prop, X: Prop, Y: Prop, Z: Prop>(
    x: Ty<Tup3<A, B, C>, Tup3<X, Y, Z>>
) -> Ty<B, Y> {tup_fst(tup_snd(x))}
/// `(a, b, c) : (x, y, z)  =>  (c : z)`.
pub fn tup3_trd<A: Prop, B: Prop, C: Prop, X: Prop, Y: Prop, Z: Prop>(
    x: Ty<Tup3<A, B, C>, Tup3<X, Y, Z>>
) -> Ty<C, Z> {tup_snd(tup_snd(x))}
/// `(a == b)  =>  (a, c, d) == (b, c, d)`.
pub fn tup3_eq_fst<A: Prop, B: Prop, C: Prop, D: Prop>(
    x: Eq<A, B>
) -> Eq<Tup3<A, C, D>, Tup3<B, C, D>> {tup_eq_fst(x)}
/// `(a == b)  =>  (c, a, d) == (c, b, d)`.
pub fn tup3_eq_snd<A: Prop, B: Prop, C: Prop, D: Prop>(
    x: Eq<A, B>
) -> Eq<Tup3<C, A, D>, Tup3<C, B, D>> {tup_eq_snd(tup_eq_fst(x))}
/// `(a == b)  =>  (c, d, a) == (c, d, b)`.
pub fn tup3_eq_trd<A: Prop, B: Prop, C: Prop, D: Prop>(
    x: Eq<A, B>
) -> Eq<Tup3<C, D, A>, Tup3<C, D, B>> {tup_eq_snd(tup_eq_snd(x))}
/// `(c : x) ⋀ (d : y) ⋀ ((a, c, d) == (b, c, d))  =>  (a == b)`.
pub fn tup3_rev_eq_fst<A: Prop, B: Prop, C: Prop, D: Prop, X: Prop, Y: Prop>(
    ty_c: Ty<C, X>,
    ty_d: Ty<D, Y>,
    x: Eq<Tup3<A, C, D>, Tup3<B, C, D>>
) -> Eq<A, B> {tup_rev_eq_fst(tup_ty(ty_c, ty_d), x)}
/// `(c : x) ⋀ (d : y) ⋀ ((c, a, d) == (c, b, d))  =>  (a == b)`.
pub fn tup3_rev_eq_snd<A: Prop, B: Prop, C: Prop, D: Prop, X: Prop, Y: Prop>(
    ty_c: Ty<C, X>,
    ty_d: Ty<D, Y>,
    x: Eq<Tup3<C, A, D>, Tup3<C, B, D>>
) -> Eq<A, B> {tup_rev_eq_fst(ty_d, tup_rev_eq_snd(ty_c, x))}
/// `(c : x) ⋀ (d : y) ⋀ ((c, d, a) == (c, d, b))  =>  (a == b)`.
pub fn tup3_rev_eq_trd<A: Prop, B: Prop, C: Prop, D: Prop, X: Prop, Y: Prop>(
    ty_c: Ty<C, X>,
    ty_d: Ty<D, Y>,
    x: Eq<Tup3<C, D, A>, Tup3<C, D, B>>
) -> Eq<A, B> {tup_rev_eq_snd(ty_d, tup_rev_eq_snd(ty_c, x))}

/// Fst.
#[derive(Copy, Clone)]
pub struct Fst(());

/// Type of Fst.
pub fn fst_ty<A: Prop, B: Prop>() -> Ty<Fst, Pow<A, Tup<A, B>>> {unimplemented!()}
/// `is_const(fst)`.
pub fn fst_is_const() -> IsConst<Fst> {unimplemented!()}
/// `fst((a, b)) = a`.
pub fn fst_def<A: Prop, B: Prop>() -> Eq<App<Fst, Tup<A, B>>, A> {unimplemented!()}

/// Snd.
#[derive(Copy, Clone)]
pub struct Snd(());

/// Type of Snd.
pub fn snd_ty<A: Prop, B: Prop>() -> Ty<Snd, Pow<B, Tup<A, B>>> {unimplemented!()}
/// `is_const(snd)`.
pub fn snd_is_const() -> IsConst<Snd> {unimplemented!()}
/// `snd((a, b)) = b`.
pub fn snd_def<A: Prop, B: Prop>() -> Eq<App<Snd, Tup<A, B>>, B> {unimplemented!()}

/// Substitute in expression.
#[derive(Clone, Copy)]
pub struct Subst<E: Prop, A: Prop, B: Prop>(E, A, B);

/// `a[a := b] == b`
pub fn subst_trivial<A: Prop, B: Prop>() -> Eq<Subst<A, A, B>, B> {unimplemented!()}
/// `a[b := a] == a`.
pub fn subst_id<A: Prop, B: Prop>() -> Eq<Subst<A, B, A>, A> {unimplemented!()}
/// `a[b := b] == b`
pub fn subst_nop<A: Prop, B: Prop>() -> Eq<Subst<A, B, B>, A> {unimplemented!()}
/// `(a : b) => (b[c := a] == b)`.
pub fn subst_ty<A: Prop, B: Prop, C: Prop>(_ty_a: Ty<A, B>) -> Eq<Subst<B, C, A>, B> {
    unimplemented!()
}
/// `is_const(a) => (a[b := c] == d)`.
pub fn subst_const<A: Prop, B: Prop, C: Prop>(_a_is_const: IsConst<A>) -> Eq<Subst<A, B, C>, A> {
    unimplemented!()
}
/// `(a, b)[c := d] == (a[c := d], b[c := d])`.
pub fn subst_tup<A: Prop, B: Prop, C: Prop, D: Prop>() ->
    Eq<Subst<Tup<A, B>, C, D>, Tup<Subst<A, C, D>, Subst<B, C, D>>> {unimplemented!()}
/// `(\(a : x) = b)[a := c] == b[a := c]`.
pub fn subst_lam<A: Prop, B: Prop, C: Prop, D: Prop, X: Prop>() ->
    Eq<Subst<Lam<Ty<A, X>, B>, C, D>, Lam<Ty<A, Subst<X, C, D>>, Subst<Subst<B, C, D>, A, C>>>
{unimplemented!()}
/// `(\(a : x) = b)[a := c] == b[a := c]`.
pub fn subst_lam_const<A: Prop, B: Prop, C: Prop, D: Prop, X: Prop>(
    _x: Eq<Subst<Lam<Ty<A, X>, B>, C, D>, Lam<Ty<A, Subst<X, C, D>>, Subst<Subst<B, C, D>, A, C>>>
) -> IsConst<A> {unimplemented!()}
/// `a[c := d] == b  =>  a[c := d][e := f] == b[e := f]`.
pub fn subst_eq<A: Prop, B: Prop, C: Prop, D: Prop, E: Prop, F: Prop>(_x: Eq<Subst<A, C, D>, B>) ->
    Eq<Subst<Subst<A, C, D>, E, F>, Subst<B, C, D>> {unimplemented!()}
/// `a[c := d] == b  =>  (\(e) = a[c := d]) == (\(e) = b)`.
pub fn subst_eq_lam_body<A: Prop, B: Prop, C: Prop, D: Prop, E: Prop>(
    _x: Eq<Subst<A, C, D>, B>
) -> Eq<Lam<E, Subst<A, C, D>>, Lam<E, B>> {unimplemented!()}

/// Whether some symbol is a constant.
#[derive(Copy, Clone)]
pub struct IsConst<A>(A);

/// `is_const(a) ⋀ is_const(b)  =>  is_const((a, b))`.
pub fn const_tup<A: Prop, B: Prop>(a: IsConst<A>, b: IsConst<B>) -> IsConst<Tup<A, B>> {
    tup_is_const(a, b)
}
/// `is_const((a, b))  =>  is_const(a) ⋀ is_const(b)`.
pub fn tup_const<A: Prop, B: Prop>(_x: IsConst<Tup<A, B>>) -> And<IsConst<A>, IsConst<B>> {
    unimplemented!()
}

/// Lambda.
#[derive(Copy, Clone)]
pub struct Lam<X, Y>(X, Y);

/// `(a : x) ⋀ (b : y)  =>  (\(a : x) = b) : (x => y)`.
pub fn lam_ty<A: Prop, B: Prop, X: Prop, Y: Prop>(
    _ty_a: Ty<A, X>,
    _ty_b: Ty<B, Y>,
) -> Ty<Lam<Ty<A, X>, B>, Imply<X, Y>> {unimplemented!()}
/// `(a : x) ⋀ b  =>  (\(a : x) = b)`.
pub fn lam_lift<A: Prop, B: Prop, X: Prop>(ty_a: Ty<A, X>, b: B) -> Lam<Ty<A, X>, B> {Lam(ty_a, b)}
/// `(a : x) ⋀ (b == c)  =>  (\(a : x) = b) == (\(a : x) = c)`.
pub fn lam_eq_lift<A: Prop, X: Prop, B: Prop, C: Prop>(
    _ty_a: Ty<A, X>,
    _eq: Eq<B, C>
) -> Eq<Lam<Ty<A, X>, B>, Lam<Ty<A, X>, C>> {unimplemented!()}
/// `(c : x) => ((\(a : x) = b)(c) == b[a := c])`.
pub fn lam<A: Prop, B: Prop, X: Prop, C: Prop>(
    _ty_c: Ty<C, X>
) -> Eq<App<Lam<Ty<A, X>, B>, C>, Subst<B, A, C>> {unimplemented!()}

/// `(a : x) ⋀ (b : y) ⋀ (c : x) ⋀ is_const(x)  =>  ((\(a : x) = b)(c) : y)`.
pub fn lam_app_ty<A: Prop, B: Prop, X: Prop, Y: Prop, C: Prop>(
    ty_a: Ty<A, X>,
    ty_b: Ty<B, Y>,
    ty_c: Ty<C, X>,
    x_is_const: IsConst<X>
) -> Ty<App<Lam<Ty<A, X>, B>, C>, Y> {
    let ty_lam: Ty<Lam<Ty<A, X>, B>, Imply<X, Y>> = lam_ty(ty_a, ty_b);
    let app_lam_ty: Ty<App<_, _>, Y> = app_lam_ty(ty_lam, ty_c, x_is_const);
    app_lam_ty
}
/// `(a : x) ⋀ (b : y) ⋀ (c : x)  =>  ((\(a : x) = b)(c) : y[a := c])`.
pub fn lam_dep_app_ty<A: Prop, B: Prop, X: Prop, Y: Prop, C: Prop>(
    ty_a: Ty<A, X>,
    ty_b: Ty<B, Y>,
    ty_c: Ty<C, X>,
) -> Ty<App<Lam<Ty<A, X>, B>, C>, Subst<Y, A, C>> {
    let ty_lam: Ty<Lam<Ty<A, X>, B>, Imply<X, Y>> = lam_ty(ty_a.clone(), ty_b.clone());
    let app_lam_ty: Ty<App<_, _>, Subst<Y, A, C>> = app_dep_lam_ty(ty_lam, ty_a, ty_b, ty_c);
    app_lam_ty
}
/// `(a : x) ⋀ (b : x)  =>  (\(a : x) = b)(b) : x`.
pub fn lam_app_ty_trivial<A: Prop, B: Prop, X: Prop>(
    ty_a: Ty<A, X>,
    ty_b: Ty<B, X>,
) -> Ty<App<Lam<Ty<A, X>, B>, B>, X> {
    let y = lam_dep_app_ty(ty_a, ty_b.clone(), ty_b.clone());
    path_semantics::ty_in_right_arg(y, subst_ty(ty_b))
}
/// `(b : x) => ((\(a : x) = b)(b) == b`.
pub fn lam_app_trivial<A: Prop, B: Prop, X: Prop>(
    ty_b: Ty<B, X>
) -> Eq<App<Lam<Ty<A, X>, B>, B>, B> {
    eq::transitivity(lam(ty_b), subst_id())
}

/// `\(a : x) = a`.
pub type LamId<A, X> = Lam<Ty<A, X>, A>;

/// `(\(a : x) = a) ~~ id`.
pub fn lam_id_q<A: Prop, X: Prop>() -> Q<LamId<A, X>, FId> {unimplemented!()}

/// `(a : x)  =>  (\(a : x) = a) : (x => x)`.
pub fn lam_id_ty<A: Prop, X: Prop>(ty_a: Ty<A, X>) -> Ty<LamId<A, X>, Imply<X, X>> {
    lam_ty(ty_a.clone(), ty_a)
}
/// `(a : x) ⋀ (b : x)  =>  (\(a : x) = a)(b) : x`.
pub fn lam_id_app_ty<A: Prop, B: Prop, X: Prop>(
    ty_a: Ty<A, X>,
    ty_b: Ty<B, X>,
    x_is_const: IsConst<X>
) -> Ty<App<LamId<A, X>, B>, X> {
    app_lam_ty(lam_id_ty(ty_a), ty_b, x_is_const)
}
/// `(\(a : x) = a)(b) = b`.
pub fn lam_id<A: Prop, B: Prop, X: Prop>() -> Eq<App<LamId<A, X>, B>, B> {
    eq::transitivity(app_map_eq(quality::to_eq(lam_id_q())), id_def())
}

/// `\(a : x) = \(b : y) = a`.
pub type LamFst<A, X, B, Y> = Lam<Ty<A, X>, Lam<Ty<B, Y>, A>>;

/// `(a : x) ⋀ (b : y)  =>  (\(a : x) = \(b : y) = a) : x`
pub fn lam_fst_ty<A: Prop, X: Prop, B: Prop, Y: Prop>(
    ty_a: Ty<A, X>,
    ty_b: Ty<B, Y>,
) -> Ty<LamFst<A, X, B, Y>, Imply<X, Imply<Y, X>>> {
    lam_ty(ty_a.clone(), lam_ty(ty_b, ty_a))
}
/// `(c : x)  =>  (\(a : x) = \(b : y) = a)(c) == (\(b : y[a := c]) = c)`.
pub fn lam_fst<A: Prop, X: Prop, B: Prop, Y: Prop, C: Prop>(
    ty_c: Ty<C, X>
) -> Eq<App<LamFst<A, X, B, Y>, C>, Lam<Ty<B, Subst<Y, A, C>>, C>> {
    eq::transitivity(eq::transitivity(lam(ty_c.clone()), subst_lam()),
        subst_eq_lam_body(eq::transitivity(subst_eq(subst_trivial()), subst_id())))
}

/// `\(a : x) = \(b : y) = b`.
pub type LamSnd<A, X, B, Y> = Lam<Ty<A, X>, LamId<B, Y>>;

/// `(a : x) ⋀ (b : y)  =>  (\(a : x) = \(b : y) = b) : y`.
pub fn lam_snd_ty<A: Prop, X: Prop, B: Prop, Y: Prop>(
    ty_a: Ty<A, X>,
    ty_b: Ty<B, Y>
) -> Ty<LamSnd<A, X, B, Y>, Imply<X, Imply<Y, Y>>> {
    lam_ty(ty_a, lam_ty(ty_b.clone(), ty_b))
}
/// `(c : x)  =>  (\(a : x) = \(b : y) = b)(c) == (\(b : y[a := c]) = b)`.
pub fn lam_snd<A: Prop, B: Prop, C: Prop, X: Prop, Y: Prop>(
    ty_c: Ty<C, X>
) -> Eq<App<LamSnd<A, X, B, Y>, C>, Lam<Ty<B, Subst<Y, A, C>>, B>> {
    let x2 = subst_lam();
    let b_is_const = subst_lam_const(x2.clone());
    eq::transitivity(lam(ty_c), eq::transitivity(x2,
        subst_eq_lam_body(eq::transitivity(subst_eq(subst_const(b_is_const.clone())),
            subst_const(b_is_const)))))
}

/// Dependent function type `(a : x) -> p(a)`.
pub type DepFunTy<A, X, PredP> = Pow<App<PredP, A>, Ty<A, X>>;
/// Dependent function `f : ((a : x) -> p(a))`.
pub type DepFun<F, A, X, PredP> = Ty<F, DepFunTy<A, X, PredP>>;
/// Dependent lambda type `(a : x) => p(a)`.
pub type DepLamTy<A, X, PredP> = Imply<Ty<A, X>, App<PredP, X>>;
/// Dependent lambda `f : ((a : x) => p(a))`.
pub type DepLam<F, A, X, PredP> = Ty<F, DepLamTy<A, X, PredP>>;

/// Parallel tuple.
#[derive(Copy, Clone)]
pub struct ParTup(());

/// `(f : (x1 -> y1)) ⋀ (g : (x2 -> y2))  =>  (f x g) : ((x1, x2) -> (y1, y2))`.
pub fn par_tup_fun_ty<F: Prop, G: Prop, X1: Prop, X2: Prop, Y1: Prop, Y2: Prop>(
    _ty_f: Ty<F, Pow<Y1, X1>>,
    _ty_g: Ty<G, Pow<Y2, X2>>,
) -> Ty<App<ParTup, Tup<F, G>>, Pow<Tup<Y1, Y2>, Tup<X1, X2>>> {
    unimplemented!()
}
/// `(f : (x1 => y1)) ⋀ (g : (x2 => y2))  =>  (f x g) : ((x1, x2) => (y1, y2))`.
pub fn par_tup_lam_ty<F: Prop, G: Prop, X1: Prop, X2: Prop, Y1: Prop, Y2: Prop>(
    _ty_f: Ty<F, Imply<X1, Y1>>,
    _ty_g: Ty<G, Imply<X2, Y2>>,
) -> Ty<App<ParTup, Tup<F, G>>, Imply<Tup<X1, X2>, Tup<Y1, Y2>>> {
    unimplemented!()
}
/// `is_const(par_tup)`.
pub fn par_tup_is_const() -> IsConst<ParTup> {unimplemented!()}
/// `(id x id) == id`.
pub fn par_tup_id() -> Eq<App<ParTup, Tup<FId, FId>>, FId> {unimplemented!()}

/// `is_const(f) ⋀ is_const(g)  =>  is_const(f x g)`.
pub fn par_tup_app_is_const<F: Prop, G: Prop>(
    f: IsConst<F>,
    g: IsConst<G>
) -> IsConst<App<ParTup, Tup<F, G>>> {
    app_is_const(par_tup_is_const(), tup_is_const(f, g))
}
/// `(g1 x g2) . (f1 x f2)  ==  ((g1 . f1) x (g2 . f2))`.
pub fn par_tup_comp<F1: Prop, F2: Prop, G1: Prop, G2: Prop>() ->
    Eq<Comp<App<ParTup, Tup<G1, G2>>, App<ParTup, Tup<F1, F2>>>,
       App<ParTup, Tup<Comp<G1, F1>, Comp<G2, F2>>>>
{unimplemented!()}
/// `inv(f x g)  ==  inv(f) x inv(g)`.
pub fn par_tup_inv<F: Prop, G: Prop>() ->
    Eq<Inv<App<ParTup, Tup<F, G>>>, App<ParTup, Tup<Inv<F>, Inv<G>>>>
{unimplemented!()}

/// `(f(i0) == o0) ⋀ (g(i1) == o1)  =>  (f x g)(i0, i1) == (o0, o1)`.
pub fn par_tup_def<F: Prop, G: Prop, I0: Prop, I1: Prop, O0: Prop, O1: Prop>(
    _eq0: Eq<App<F, I0>, O0>,
    _eq1: Eq<App<G, I1>, O1>,
) -> Eq<App<App<ParTup, Tup<F, G>>, Tup<I0, I1>>, Tup<O0, O1>> {unimplemented!()}

/// `f[g1 -> g2]`.
///
/// Normal path of 1 argument.
pub type Norm1<F, G1, G2> = Comp<Comp<G2, F>, Inv<G1>>;
/// `f[g]` of 1 argument.
pub type SymNorm1<F, G> = Norm1<F, G, G>;
/// `f[g1 x g2 -> g3]`.
///
/// Normal path of 2 arguments.
pub type Norm2<F, G1, G2, G3> = Comp<Comp<G3, F>, App<ParTup, Tup<Inv<G1>, Inv<G2>>>>;
/// `f[g]` of 2 arguments.
pub type SymNorm2<F, G> = Norm2<F, G, G, G>;

/// `f[g1 -> g2][g3 -> g4]  ==  f[(g3 . g1) -> (g4 . g2)]`.
pub fn norm1_comp<F: Prop, G1: Prop, G2: Prop, G3: Prop, G4: Prop>() ->
    Eq<Norm1<Norm1<F, G1, G2>, G3, G4>, Norm1<F, Comp<G3, G1>, Comp<G4, G2>>>
{
    let y = eq::transitivity(comp_eq_left(comp_assoc()), eq::symmetry(comp_assoc()));
    eq::transitivity(eq::transitivity(y, comp_eq_right(comp_inv())), comp_eq_left(comp_assoc()))
}
/// `f[g1][g2]  ==  f[g2 . g1]` for 1 argument.
pub fn sym_norm1_comp<F: Prop, G1: Prop, G2: Prop>() ->
    Eq<SymNorm1<SymNorm1<F, G1>, G2>, SymNorm1<F, Comp<G2, G1>>>
{norm1_comp()}
/// `(f == h)  =>  f[g1 -> g2] == h[g1 -> g2]`.
pub fn norm1_eq<F: Prop, G1: Prop, G2: Prop, H: Prop>(x: Eq<F, H>) ->
    Eq<Norm1<F, G1, G2>, Norm1<H, G1, G2>>
{comp_eq_left(comp_eq_right(x))}
/// `(g1 == h)  =>  f[g1 -> g2] == f[h -> g2]`.
pub fn norm1_eq_in<F: Prop, G1: Prop, G2: Prop, H: Prop>(x: Eq<G1, H>) ->
    Eq<Norm1<F, G1, G2>, Norm1<F, H, G2>>
{comp_eq_right(inv_eq(x))}
/// `(g2 == h)  =>  f[g1 -> g2] == f[g1 -> h]`.
pub fn norm1_eq_out<F: Prop, G1: Prop, G2: Prop, H: Prop>(x: Eq<G2, H>) ->
    Eq<Norm1<F, G1, G2>, Norm1<F, G1, H>>
{comp_eq_left(comp_eq_left(x))}
/// `(f == h)  =>  f[g1 x g2 -> g3] == h[g1 x g2 -> g3]`.
pub fn norm2_eq<F: Prop, G1: Prop, G2: Prop, G3: Prop, H: Prop>(x: Eq<F, H>) ->
    Eq<Norm2<F, G1, G2, G3>, Norm2<H, G1, G2, G3>>
{comp_eq_left(comp_eq_right(x))}
/// `f[g1 x g2 -> g3]  ==  f[(g1 x g2) -> g3]`.
pub fn eq_norm2_norm1<F: Prop, G1: Prop, G2: Prop, G3: Prop>() ->
    Eq<Norm2<F, G1, G2, G3>, Norm1<F, App<ParTup, Tup<G1, G2>>, G3>>
{comp_eq_right(eq::symmetry(par_tup_inv()))}
/// `f[g1 x g2 -> g3][g4 x g5 -> g6]  ==  f[(g1 x g2) -> g3][(g4 x g5) -> g6]`.
pub fn eq_norm2_norm1_comp<F: Prop, G1: Prop, G2: Prop, G3: Prop, G4: Prop, G5: Prop, G6: Prop>()
    -> Eq<Norm2<Norm2<F, G1, G2, G3>, G4, G5, G6>,
          Norm1<Norm1<F, App<ParTup, Tup<G1, G2>>, G3>, App<ParTup, Tup<G4, G5>>, G6>>
{eq::transitivity(norm2_eq(eq_norm2_norm1()), eq_norm2_norm1())}
/// `f[g1 x g2 -> g3][g4 x g5 -> g6]  ==  f[(g4 . g1) x (g5 . g2) -> (g6 . g3)]`.
pub fn norm2_comp<F: Prop, G1: Prop, G2: Prop, G3: Prop, G4: Prop, G5: Prop, G6: Prop>() ->
    Eq<Norm2<Norm2<F, G1, G2, G3>, G4, G5, G6>, Norm2<F, Comp<G4, G1>, Comp<G5, G2>, Comp<G6, G3>>>
{
    let (y0, y1) = eq_norm2_norm1_comp();
    let (y2, y3) = norm1_comp();
    let (y4, y5) = eq_norm2_norm1();
    let (x0, x1) = norm1_eq_in(par_tup_comp());
    (imply::transitivity(imply::transitivity(imply::transitivity(y0, y2), x0), y5),
     imply::transitivity(imply::transitivity(imply::transitivity(y4, x1), y3), y1))
}
/// `f[g1][g2]  ==  f[g2 . g1]` for 2 arguments.
pub fn sym_norm2_comp<F: Prop, G1: Prop, G2: Prop>() ->
    Eq<SymNorm2<SymNorm2<F, G1>, G2>, SymNorm2<F, Comp<G2, G1>>>
{norm2_comp()}
/// `f[id]  == f` for 1 argument.
pub fn sym_norm1_id<F: Prop>() -> Eq<SymNorm1<F, FId>, F> {
    let x = quality::to_eq(id_q());
    eq::transitivity(eq::transitivity(comp_eq_right(x), comp_id_right()), comp_id_left())
}
/// `f[id] == f` for 2 arguments.
pub fn sym_norm2_id<F: Prop>() -> Eq<SymNorm2<F, FId>, F> {
    eq::transitivity(eq::transitivity(eq_norm2_norm1(),
        comp_eq_right(inv_eq(par_tup_id()))), sym_norm1_id())
}
/// `id[f -> id] == inv(f)`.
pub fn norm1_inv<F: Prop>() -> Eq<Norm1<FId, F, FId>, Inv<F>> {
    eq::transitivity(comp_eq_left(comp_id_left()), comp_id_left())
}

/// `\(a : x) = (f(a) == g(a))`.
pub type FunExtAppEq<F, G, A, X> = Comp<Lam<Ty<A, X>, Eq<App<F, A>, App<G, A>>>, Comp<Snd, Snd>>;

/// `((f, g, a) : (x -> y, x -> y, x)) -> ((\(a : x) = (f(a) == g(a))) . (snd . snd))((f, g, a))`.
///
/// Function extensionality type.
pub type FunExtTy<F, G, X, Y, A> = DepFunTy<
    Tup3<F, G, A>, Tup3<Pow<Y, X>, Pow<Y, X>, X>,
    FunExtAppEq<F, G, A, X>,
>;
/// Function extensionality.
#[derive(Copy, Clone)]
pub struct FunExt(());

/// Type of function extensionality.
pub fn fun_ext_ty<F: Prop, G: Prop, X: Prop, Y: Prop, A: Prop>() ->
    Ty<App<FunExt, Tup<F, G>>, Pow<FunExtTy<F, G, X, Y, A>, Tauto<Eq<F, G>>>>
{unimplemented!()}
/// `~inv(fun_ext(f, g))`.
pub fn qu_inv_fun_ext<F: Prop, G: Prop>() -> Qu<Inv<App<FunExt, Tup<F, G>>>> {unimplemented!()}

/// `(a : x) ⋀ (f == g)  =>  ((\(a : x) = (f(a) == g(a))) . (snd . snd))((f, g, a))`.
pub fn fun_ext_app_eq_from_eq<F: Prop, G: Prop, A: Prop, X: Prop>(
    ty_a: Ty<A, X>,
    eq: Eq<F, G>
) -> App<FunExtAppEq<F, G, A, X>, Tup3<F, G, A>> {
    let x = app_map_eq(comp_eq_left(lam_eq_lift(ty_a.clone(),
        (True.map_any(), app_map_eq(eq).map_any()))));
    let x = eq::transitivity(x, eq::symmetry(eq_app_comp()));
    let x = eq::transitivity(x, app_eq(eq::symmetry(eq_app_comp())));
    let x = eq::transitivity(eq::transitivity(x, app_eq(app_eq(snd_def()))), app_eq(snd_def()));
    eq::transitivity(x, eq::transitivity(lam(ty_a), subst_nop())).1(True)
}
/// `(f == g)^true => fun_ext_ty(f, g)`.
pub fn fun_ext<F: Prop, G: Prop, X: Prop, Y: Prop, A: Prop>(
    tauto_eq_fg: Tauto<Eq<F, G>>
) -> FunExtTy<F, G, X, Y, A> {
    use path_semantics::ty_eq_left;
    use hooo::{hooo_eq, hooo_imply, pow_eq_right, pow_transitivity, tauto_eq_symmetry, tr};
    use hooo::pow::PowExt;

    fn g<F: Prop, G: Prop>(x: Eq<F, G>) -> Eq<Eq<F, F>, Eq<F, G>> {
        (x.map_any(), eq::refl().map_any())
    }
    fn h<A: Prop, B: Prop, C: Prop, X: Prop>(ty_a: Ty<A, X>) ->
        Imply<Eq<B, C>, Eq<Lam<Ty<A, X>, B>, Lam<Ty<A, X>, C>>>
    {Rc::new(move |x| lam_eq_lift(ty_a.clone(), x))}

    let x = hooo_imply(h)(hooo::tr().trans(tauto_eq_fg.trans(app_map_eq).trans(g)))
        .trans(comp_eq_left).trans(app_map_eq);
    let y = {
        let x = tauto_eq_symmetry(tauto_eq_fg).trans(tup3_eq_snd);
        eq::transitivity(hooo_eq(tr().trans(x.trans(app_eq))), pow_eq_right(x.trans(ty_eq_left)))
    };
    eq::in_left_arg(hooo_eq(pow_transitivity(tup3_trd, x)), y).0(fun_ext_refl())
}
/// `fun_ext_ty(f, g) => (f == g)^true`.
pub fn fun_rev_ext<F: Prop, G: Prop, X: Prop, Y: Prop, A: Prop>(
    x: FunExtTy<F, G, X, Y, A>
) -> Tauto<Eq<F, G>> {path_inv(qu_inv_fun_ext(), fun_ext_ty(), fun_ext)(x)}
/// `(a : x)  =>  ((\(a : x) = (f(a) == f(a))) . (snd . snd))((f, f, a))`.
pub fn fun_ext_app_eq_refl<F: Prop, A: Prop, X: Prop>(
    ty_a: Ty<A, X>
) -> App<FunExtAppEq<F, F, A, X>, Tup3<F, F, A>> {fun_ext_app_eq_from_eq(ty_a, eq::refl())}
/// `fun_ext_ty(f, f)`.
pub fn fun_ext_refl<F: Prop, X: Prop, Y: Prop, A: Prop>() -> FunExtTy<F, F, X, Y, A> {
    hooo::pow_transitivity(tup3_trd, fun_ext_app_eq_refl)
}
/// `fun_ext_ty(f, g) => fun_ext_ty(g, f)`.
pub fn fun_ext_symmetry<F: Prop, G: Prop, X: Prop, Y: Prop, A: Prop>(
    x: FunExtTy<F, G, X, Y, A>
) -> FunExtTy<G, F, X, Y, A> {fun_ext(hooo::tauto_eq_symmetry(fun_rev_ext(x)))}
/// `fun_ext_ty(f, g) ⋀ fun_ext_ty(g, h)  =>  fun_ext_ty(f, h)`.
pub fn fun_ext_transitivity<F: Prop, G: Prop, H: Prop, X: Prop, Y: Prop, A: Prop>(
    fun_ext_fg: FunExtTy<F, G, X, Y, A>,
    fun_ext_gh: FunExtTy<G, H, X, Y, A>,
) -> FunExtTy<F, H, X, Y, A> {
    let fg = fun_rev_ext(fun_ext_fg);
    let gh = fun_rev_ext(fun_ext_gh);
    fun_ext(hooo::tauto_eq_transitivity(fg, gh))
}