1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
//! Functions and structs related to process information
//!
//! The primary source of data for functions in this module is the files in a `/proc/<pid>/`
//! directory.  If you have a process ID, you can use
//! [`Process::new(pid)`](struct.Process.html#method.new), otherwise you can get a
//! list of all running processes using [`all_processes()`](fn.all_processes.html).
//!
//! In case you have procfs filesystem mounted to a location other than `/proc`,
//! use [`Process::new_with_root()`](struct.Process.html#method.new_with_root).
//!
//! # Examples
//!
//! Here's a small example that prints out all processes that are running on the same tty as the calling
//! process.  This is very similar to what "ps" does in its default mode.  You can run this example
//! yourself with:
//!
//! > cargo run --example=ps
//!
//! ```rust
//! let me = procfs::process::Process::myself().unwrap();
//! let me_stat = me.stat().unwrap();
//! let tps = procfs::ticks_per_second();
//!
//! println!("{: >10} {: <8} {: >8} {}", "PID", "TTY", "TIME", "CMD");
//!
//! let tty = format!("pty/{}", me_stat.tty_nr().1);
//! for prc in procfs::process::all_processes().unwrap() {
//!     if let Ok(stat) = prc.unwrap().stat() {
//!         if stat.tty_nr == me_stat.tty_nr {
//!             // total_time is in seconds
//!             let total_time =
//!                 (stat.utime + stat.stime) as f32 / (tps as f32);
//!             println!(
//!                 "{: >10} {: <8} {: >8} {}",
//!                 stat.pid, tty, total_time, stat.comm
//!             );
//!         }
//!     }
//! }
//! ```
//!
//! Here's a simple example of how you could get the total memory used by the current process.
//! There are several ways to do this.  For a longer example, see the `examples/self_memory.rs`
//! file in the git repository.  You can run this example with:
//!
//! > cargo run --example=self_memory
//!
//! ```rust
//! # use procfs::process::Process;
//! let me = Process::myself().unwrap();
//! let me_stat = me.stat().unwrap();
//! let page_size = procfs::page_size();
//!
//! println!("== Data from /proc/self/stat:");
//! println!("Total virtual memory used: {} bytes", me_stat.vsize);
//! println!("Total resident set: {} pages ({} bytes)", me_stat.rss, me_stat.rss as u64 * page_size);
//! ```

use super::*;
use crate::net::{TcpNetEntry, UdpNetEntry};

pub use procfs_core::process::*;
use rustix::fd::{AsFd, BorrowedFd, OwnedFd, RawFd};
use rustix::fs::{AtFlags, Mode, OFlags, RawMode};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
use std::ffi::OsStr;
use std::ffi::OsString;
use std::fs::read_link;
use std::io::{self, Read};
use std::os::unix::ffi::OsStringExt;
use std::os::unix::fs::MetadataExt;
use std::path::PathBuf;
use std::str::FromStr;

mod namespaces;
pub use namespaces::*;

mod task;
pub use task::*;

mod pagemap;
pub use pagemap::*;

#[cfg(test)]
mod tests;

bitflags! {
    /// The mode (read/write permissions) for an open file descriptor
    ///
    /// This is represented as `u16` since the values of these bits are
    /// [documented] to be within the `u16` range.
    ///
    /// [documented]: https://man7.org/linux/man-pages/man2/chmod.2.html#DESCRIPTION
    #[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
    #[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
    pub struct FDPermissions: u16 {
        const READ = Mode::RUSR.bits() as u16;
        const WRITE = Mode::WUSR.bits() as u16;
        const EXECUTE = Mode::XUSR.bits() as u16;
    }
}

/// See the [Process::fd()] method
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct FDInfo {
    /// The file descriptor
    pub fd: i32,
    /// The permission bits for this FD
    ///
    /// **Note**: this field is only the owner read/write/execute bits.  All the other bits
    /// (include filetype bits) are masked out.  See also the `mode()` method.
    pub mode: u16,
    pub target: FDTarget,
}

impl FDInfo {
    /// Gets a file descriptor from a raw fd
    pub fn from_raw_fd(pid: i32, raw_fd: i32) -> ProcResult<Self> {
        Self::from_raw_fd_with_root("/proc", pid, raw_fd)
    }

    /// Gets a file descriptor from a raw fd based on a specified `/proc` path
    pub fn from_raw_fd_with_root(root: impl AsRef<Path>, pid: i32, raw_fd: i32) -> ProcResult<Self> {
        let path = root.as_ref().join(pid.to_string()).join("fd").join(raw_fd.to_string());
        let link = wrap_io_error!(path, read_link(&path))?;
        let md = wrap_io_error!(path, path.symlink_metadata())?;
        let link_os: &OsStr = link.as_ref();
        Ok(Self {
            fd: raw_fd,
            mode: ((md.mode() as RawMode) & Mode::RWXU.bits()) as u16,
            target: expect!(FDTarget::from_str(expect!(link_os.to_str()))),
        })
    }

    /// Gets a file descriptor from a directory fd and a path relative to it.
    ///
    /// `base` is the path to the directory fd, and is used for error messages.
    fn from_process_at<P: AsRef<Path>, Q: AsRef<Path>>(
        base: P,
        dirfd: BorrowedFd,
        path: Q,
        fd: i32,
    ) -> ProcResult<Self> {
        let p = path.as_ref();
        let root = base.as_ref().join(p);
        // for 2.6.39 <= kernel < 3.6 fstat doesn't support O_PATH see https://github.com/eminence/procfs/issues/265
        let flags = match *crate::KERNEL {
            Ok(v) if v < KernelVersion::new(3, 6, 0) => OFlags::NOFOLLOW | OFlags::CLOEXEC,
            Ok(_) => OFlags::NOFOLLOW | OFlags::PATH | OFlags::CLOEXEC,
            Err(_) => OFlags::NOFOLLOW | OFlags::PATH | OFlags::CLOEXEC,
        };
        let file = wrap_io_error!(root, rustix::fs::openat(dirfd, p, flags, Mode::empty()))?;
        let link = rustix::fs::readlinkat(&file, "", Vec::new()).map_err(io::Error::from)?;
        let md =
            rustix::fs::statat(&file, "", AtFlags::SYMLINK_NOFOLLOW | AtFlags::EMPTY_PATH).map_err(io::Error::from)?;

        let link_os = link.to_string_lossy();
        let target = FDTarget::from_str(link_os.as_ref())?;
        Ok(FDInfo {
            fd,
            mode: (md.st_mode & Mode::RWXU.bits()) as u16,
            target,
        })
    }

    /// Gets the read/write mode of this file descriptor as a bitfield
    pub fn mode(&self) -> FDPermissions {
        FDPermissions::from_bits_truncate(self.mode)
    }
}

impl std::fmt::Debug for FDInfo {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "FDInfo {{ fd: {:?}, mode: 0{:o}, target: {:?} }}",
            &self.fd, self.mode, self.target
        )
    }
}

/// Represents a process in `/proc/<pid>`.
///
/// **Note** The `Process` struct holds an open file descriptor to its `/proc/<pid>` directory.
/// This makes it possible to construct a `Process` object and then later call the various methods
/// on it without a risk of inadvertently getting information from the wrong process (due to PID
/// reuse).
///
/// However the downside is that holding a lot of `Process` objects might cause the process to run
/// out of file descriptors.
///
/// For use cases that don't involve holding a lot of `Process` objects, no special handler is
/// needed.  But if you do hold a lot of these objects (for example if you're writing a `ps`
/// or `top` -like program), you'll likely want to gather all of the necessary info from `Process`
/// object into a new struct and then drop the `Process` object
///
#[derive(Debug)]
pub struct Process {
    fd: OwnedFd,
    pub pid: i32,
    pub(crate) root: PathBuf,
}

/// Methods for constructing a new `Process` object.
impl Process {
    /// Returns a `Process` based on a specified PID.
    ///
    /// This can fail if the process doesn't exist, or if you don't have permission to access it.
    pub fn new(pid: i32) -> ProcResult<Process> {
        let root = PathBuf::from("/proc").join(pid.to_string());
        Self::new_with_root(root)
    }

    /// Returns a `Process` based on a specified `/proc/<pid>` path.
    pub fn new_with_root(root: PathBuf) -> ProcResult<Process> {
        // for 2.6.39 <= kernel < 3.6 fstat doesn't support O_PATH see https://github.com/eminence/procfs/issues/265
        let flags = match *crate::KERNEL {
            Ok(v) if v < KernelVersion::new(3, 6, 0) => OFlags::DIRECTORY | OFlags::CLOEXEC,
            Ok(_) => OFlags::PATH | OFlags::DIRECTORY | OFlags::CLOEXEC,
            Err(_) => OFlags::PATH | OFlags::DIRECTORY | OFlags::CLOEXEC,
        };
        let file = wrap_io_error!(root, rustix::fs::openat(rustix::fs::CWD, &root, flags, Mode::empty()))?;

        let pidres = root
            .as_path()
            .components()
            .last()
            .and_then(|c| match c {
                std::path::Component::Normal(s) => Some(s),
                _ => None,
            })
            .and_then(|s| s.to_string_lossy().parse::<i32>().ok())
            .or_else(|| {
                rustix::fs::readlinkat(rustix::fs::CWD, &root, Vec::new())
                    .ok()
                    .and_then(|s| s.to_string_lossy().parse::<i32>().ok())
            });
        let pid = match pidres {
            Some(pid) => pid,
            None => return Err(ProcError::NotFound(Some(root))),
        };

        Ok(Process { fd: file, pid, root })
    }

    /// Returns a `Process` for the currently running process.
    ///
    /// This is done by using the `/proc/self` symlink
    pub fn myself() -> ProcResult<Process> {
        let root = PathBuf::from("/proc/self");
        Self::new_with_root(root)
    }
}

impl Process {
    /// Returns the complete command line for the process, unless the process is a zombie.
    pub fn cmdline(&self) -> ProcResult<Vec<String>> {
        let mut buf = String::new();
        let mut f = FileWrapper::open_at(&self.root, &self.fd, "cmdline")?;
        f.read_to_string(&mut buf)?;
        Ok(buf
            .split('\0')
            .filter_map(|s| if !s.is_empty() { Some(s.to_string()) } else { None })
            .collect())
    }

    /// Returns the process ID for this process, if the process was created from an ID. Otherwise
    /// use stat().pid.
    pub fn pid(&self) -> i32 {
        self.pid
    }

    /// Is this process still alive?
    ///
    /// Processes in the Zombie or Dead state are not considered alive.
    pub fn is_alive(&self) -> bool {
        if let Ok(stat) = self.stat() {
            stat.state != 'Z' && stat.state != 'X'
        } else {
            false
        }
    }

    /// What user owns this process?
    pub fn uid(&self) -> ProcResult<u32> {
        Ok(self.metadata()?.st_uid)
    }

    fn metadata(&self) -> ProcResult<rustix::fs::Stat> {
        Ok(rustix::fs::fstat(&self.fd).map_err(io::Error::from)?)
    }

    /// Retrieves current working directory of the process by dereferencing `/proc/<pid>/cwd` symbolic link.
    ///
    /// This method has the following caveats:
    ///
    /// * if the pathname has been unlinked, the symbolic link will contain the string " (deleted)"
    ///   appended to the original pathname
    ///
    /// * in a multithreaded process, the contents of this symbolic link are not available if the
    ///   main thread has already terminated (typically by calling `pthread_exit(3)`)
    ///
    /// * permission to dereference or read this symbolic link is governed by a
    ///   `ptrace(2)` access mode `PTRACE_MODE_READ_FSCREDS` check
    pub fn cwd(&self) -> ProcResult<PathBuf> {
        Ok(PathBuf::from(OsString::from_vec(
            wrap_io_error!(
                self.root.join("cwd"),
                rustix::fs::readlinkat(&self.fd, "cwd", Vec::new())
            )?
            .into_bytes(),
        )))
    }

    /// Retrieves current root directory of the process by dereferencing `/proc/<pid>/root` symbolic link.
    ///
    /// This method has the following caveats:
    ///
    /// * if the pathname has been unlinked, the symbolic link will contain the string " (deleted)"
    ///   appended to the original pathname
    ///
    /// * in a multithreaded process, the contents of this symbolic link are not available if the
    ///   main thread has already terminated (typically by calling `pthread_exit(3)`)
    ///
    /// * permission to dereference or read this symbolic link is governed by a
    ///   `ptrace(2)` access mode `PTRACE_MODE_READ_FSCREDS` check
    pub fn root(&self) -> ProcResult<PathBuf> {
        Ok(PathBuf::from(OsString::from_vec(
            wrap_io_error!(
                self.root.join("root"),
                rustix::fs::readlinkat(&self.fd, "root", Vec::new())
            )?
            .into_bytes(),
        )))
    }

    /// Gets the current environment for the process.  This is done by reading the
    /// `/proc/pid/environ` file.
    pub fn environ(&self) -> ProcResult<HashMap<OsString, OsString>> {
        use std::os::unix::ffi::OsStrExt;

        let mut map = HashMap::new();

        let mut file = FileWrapper::open_at(&self.root, &self.fd, "environ")?;
        let mut buf = Vec::new();
        file.read_to_end(&mut buf)?;

        for slice in buf.split(|b| *b == 0) {
            // slice will be in the form key=var, so split on the first equals sign
            let mut split = slice.splitn(2, |b| *b == b'=');
            if let (Some(k), Some(v)) = (split.next(), split.next()) {
                map.insert(OsStr::from_bytes(k).to_os_string(), OsStr::from_bytes(v).to_os_string());
            };
            //let env = OsStr::from_bytes(slice);
        }

        Ok(map)
    }

    /// Retrieves the actual path of the executed command by dereferencing `/proc/<pid>/exe` symbolic link.
    ///
    /// This method has the following caveats:
    ///
    /// * if the pathname has been unlinked, the symbolic link will contain the string " (deleted)"
    ///   appended to the original pathname
    ///
    /// * in a multithreaded process, the contents of this symbolic link are not available if the
    ///   main thread has already terminated (typically by calling `pthread_exit(3)`)
    ///
    /// * permission to dereference or read this symbolic link is governed by a
    ///   `ptrace(2)` access mode `PTRACE_MODE_READ_FSCREDS` check
    pub fn exe(&self) -> ProcResult<PathBuf> {
        Ok(PathBuf::from(OsString::from_vec(
            wrap_io_error!(
                self.root.join("exe"),
                rustix::fs::readlinkat(&self.fd, "exe", Vec::new())
            )?
            .into_bytes(),
        )))
    }

    /// Return the Io stats for this process, based on the `/proc/pid/io` file.
    ///
    /// (since kernel 2.6.20)
    pub fn io(&self) -> ProcResult<Io> {
        FromRead::from_read(FileWrapper::open_at(&self.root, &self.fd, "io")?)
    }

    /// Return a list of the currently mapped memory regions and their access permissions, based on
    /// the `/proc/pid/maps` file.
    pub fn maps(&self) -> ProcResult<MemoryMaps> {
        FromRead::from_read(FileWrapper::open_at(&self.root, &self.fd, "maps")?)
    }

    /// Returns a list of currently mapped memory regions and verbose information about them,
    /// such as memory consumption per mapping, based on the `/proc/pid/smaps` file.
    ///
    /// (since Linux 2.6.14 and requires CONFIG_PROG_PAGE_MONITOR)
    pub fn smaps(&self) -> ProcResult<MemoryMaps> {
        FromRead::from_read(FileWrapper::open_at(&self.root, &self.fd, "smaps")?)
    }

    /// This is the sum of all the smaps data but it is much more performant to get it this way.
    ///
    /// Since 4.14 and requires CONFIG_PROC_PAGE_MONITOR.
    pub fn smaps_rollup(&self) -> ProcResult<SmapsRollup> {
        FromRead::from_read(FileWrapper::open_at(&self.root, &self.fd, "smaps_rollup")?)
    }

    /// Returns the [MountStat] data for this process's mount namespace.
    pub fn mountstats(&self) -> ProcResult<MountStats> {
        self.read("mountstats")
    }

    /// Returns info about the mountpoints in this this process's mount namespace.
    ///
    /// This data is taken from the `/proc/[pid]/mountinfo` file
    ///
    /// # Example:
    ///
    /// ```
    /// # use procfs::process::Process;
    /// let stats = Process::myself().unwrap().mountstats().unwrap();
    ///
    /// for mount in stats {
    ///     println!("{} mounted on {} wth type {}",
    ///         mount.device.unwrap_or("??".to_owned()),
    ///         mount.mount_point.display(),
    ///         mount.fs
    ///     );
    /// }
    /// ```
    ///
    /// (Since Linux 2.6.26)
    pub fn mountinfo(&self) -> ProcResult<MountInfos> {
        self.read("mountinfo")
    }

    /// Gets the number of open file descriptors for a process
    ///
    /// Calling this function is more efficient than calling `fd().unwrap().count()`
    pub fn fd_count(&self) -> ProcResult<usize> {
        // Use fast path if available (Linux v6.2): https://github.com/torvalds/linux/commit/f1f1f2569901
        let stat = wrap_io_error!(
            self.root.join("fd"),
            rustix::fs::statat(&self.fd, "fd", AtFlags::empty())
        )?;
        if stat.st_size > 0 {
            return Ok(stat.st_size as usize);
        }

        let fds = wrap_io_error!(
            self.root.join("fd"),
            rustix::fs::openat(
                &self.fd,
                "fd",
                OFlags::RDONLY | OFlags::DIRECTORY | OFlags::CLOEXEC,
                Mode::empty()
            )
        )?;
        let fds = wrap_io_error!(self.root.join("fd"), rustix::fs::Dir::read_from(fds))?;
        Ok(fds.count())
    }

    /// Gets a iterator of open file descriptors for a process
    pub fn fd(&self) -> ProcResult<FDsIter> {
        let dir_fd = wrap_io_error!(
            self.root.join("fd"),
            rustix::fs::openat(
                &self.fd,
                "fd",
                OFlags::RDONLY | OFlags::DIRECTORY | OFlags::CLOEXEC,
                Mode::empty()
            )
        )?;
        let dir = wrap_io_error!(self.root.join("fd"), rustix::fs::Dir::read_from(&dir_fd))?;
        Ok(FDsIter {
            inner: dir,
            inner_fd: dir_fd,
            root: self.root.clone(),
        })
    }

    pub fn fd_from_fd(&self, fd: i32) -> ProcResult<FDInfo> {
        let path = PathBuf::from("fd").join(fd.to_string());
        FDInfo::from_process_at(&self.root, self.fd.as_fd(), path, fd)
    }

    /// Lists which memory segments are written to the core dump in the event that a core dump is performed.
    ///
    /// By default, the following bits are set:
    /// 0, 1, 4 (if the CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS kernel configuration option is enabled), and 5.
    /// This default can be modified at boot time using the core dump_filter boot option.
    ///
    /// This function will return `Err(ProcError::NotFound)` if the `coredump_filter` file can't be
    /// found.  If it returns `Ok(None)` then the process has no coredump_filter
    pub fn coredump_filter(&self) -> ProcResult<Option<CoredumpFlags>> {
        let mut file = FileWrapper::open_at(&self.root, &self.fd, "coredump_filter")?;
        let mut s = String::new();
        file.read_to_string(&mut s)?;
        if s.trim().is_empty() {
            return Ok(None);
        }
        let flags = from_str!(u32, &s.trim(), 16, pid: self.pid);
        Ok(Some(expect!(CoredumpFlags::from_bits(flags))))
    }

    /// Gets the process's autogroup membership
    ///
    /// (since Linux 2.6.38 and requires CONFIG_SCHED_AUTOGROUP)
    pub fn autogroup(&self) -> ProcResult<String> {
        let mut s = String::new();
        let mut file = FileWrapper::open_at(&self.root, &self.fd, "autogroup")?;
        file.read_to_string(&mut s)?;
        Ok(s)
    }

    /// Get the process's auxiliary vector
    ///
    /// (since 2.6.0-test7)
    pub fn auxv(&self) -> ProcResult<HashMap<u64, u64>> {
        let mut file = FileWrapper::open_at(&self.root, &self.fd, "auxv")?;
        let mut map = HashMap::new();

        let mut buf = Vec::new();
        let bytes_read = file.read_to_end(&mut buf)?;
        if bytes_read == 0 {
            // some kernel processes won't have any data for their auxv file
            return Ok(map);
        }
        buf.truncate(bytes_read);
        let mut file = std::io::Cursor::new(buf);

        let mut buf = 0usize.to_ne_bytes();
        loop {
            file.read_exact(&mut buf)?;
            let key = usize::from_ne_bytes(buf) as u64;
            file.read_exact(&mut buf)?;
            let value = usize::from_ne_bytes(buf) as u64;
            if key == 0 && value == 0 {
                break;
            }
            map.insert(key, value);
        }

        Ok(map)
    }

    /// Gets the symbolic name corresponding to the location in the kernel where the process is sleeping.
    ///
    /// (since Linux 2.6.0)
    pub fn wchan(&self) -> ProcResult<String> {
        let mut s = String::new();
        let mut file = FileWrapper::open_at(&self.root, &self.fd, "wchan")?;
        file.read_to_string(&mut s)?;
        Ok(s)
    }

    /// Return the `Status` for this process, based on the `/proc/[pid]/status` file.
    pub fn status(&self) -> ProcResult<Status> {
        self.read("status")
    }

    /// Returns the status info from `/proc/[pid]/stat`.
    pub fn stat(&self) -> ProcResult<Stat> {
        self.read("stat")
    }

    /// Return the limits for this process
    pub fn limits(&self) -> ProcResult<Limits> {
        self.read("limits")
    }

    /// Gets the process' login uid. May not be available.
    pub fn loginuid(&self) -> ProcResult<u32> {
        let mut uid = String::new();
        let mut file = FileWrapper::open_at(&self.root, &self.fd, "loginuid")?;
        file.read_to_string(&mut uid)?;
        Status::parse_uid_gid(&uid, 0)
    }

    /// The current score that the kernel gives to this process for the purpose of selecting a
    /// process for the OOM-killer
    ///
    /// A higher score means that the process is more likely to be selected by the OOM-killer.
    /// The basis for this score is the amount of memory used by the process, plus other factors.
    ///
    /// (Since linux 2.6.11)
    pub fn oom_score(&self) -> ProcResult<u32> {
        let mut file = FileWrapper::open_at(&self.root, &self.fd, "oom_score")?;
        let mut oom = String::new();
        file.read_to_string(&mut oom)?;
        Ok(from_str!(u32, oom.trim()))
    }

    /// Set process memory information
    ///
    /// Much of this data is the same as the data from `stat()` and `status()`
    pub fn statm(&self) -> ProcResult<StatM> {
        self.read("statm")
    }

    /// Return a task for the main thread of this process
    pub fn task_main_thread(&self) -> ProcResult<Task> {
        self.task_from_tid(self.pid)
    }

    /// Return a task for the main thread of this process
    pub fn task_from_tid(&self, tid: i32) -> ProcResult<Task> {
        let path = PathBuf::from("task").join(tid.to_string());
        Task::from_process_at(&self.root, self.fd.as_fd(), path, self.pid, tid)
    }

    /// Return the `Schedstat` for this process, based on the `/proc/<pid>/schedstat` file.
    ///
    /// (Requires CONFIG_SCHED_INFO)
    pub fn schedstat(&self) -> ProcResult<Schedstat> {
        self.read("schedstat")
    }

    /// Iterate over all the [`Task`]s (aka Threads) in this process
    ///
    /// Note that the iterator does not receive a snapshot of tasks, it is a
    /// lazy iterator over whatever happens to be running when the iterator
    /// gets there, see the examples below.
    ///
    /// # Examples
    ///
    /// ## Simple iteration over subtasks
    ///
    /// If you want to get the info that most closely matches what was running
    /// when you call `tasks` you should collect them as quikcly as possible,
    /// and then run processing over that collection:
    ///
    /// ```
    /// # use std::thread;
    /// # use std::sync::mpsc::channel;
    /// # use procfs::process::Process;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// # let (finish_tx, finish_rx) = channel();
    /// # let (start_tx, start_rx) = channel();
    /// let name = "testing:example";
    /// let t = thread::Builder::new().name(name.to_string())
    ///   .spawn(move || { // do work
    /// #     start_tx.send(()).unwrap();
    /// #     finish_rx.recv().expect("valid channel");
    ///   })?;
    /// # start_rx.recv()?;
    ///
    /// let proc = Process::myself()?;
    ///
    /// // Collect a snapshot
    /// let threads: Vec<_> = proc.tasks()?.flatten().map(|t| t.stat().unwrap().comm).collect();
    /// threads.iter().find(|s| &**s == name).expect("thread should exist");
    ///
    /// # finish_tx.send(());
    /// # t.join().unwrap();
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// ## The TaskIterator is lazy
    ///
    /// This means both that tasks that stop before you get to them in
    /// iteration will not be there, and that new tasks that are created after
    /// you start the iterator *will* appear.
    ///
    /// ```
    /// # use std::thread;
    /// # use std::sync::mpsc::channel;
    /// # use procfs::process::Process;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let proc = Process::myself()?;
    ///
    /// // Task iteration is lazy
    /// let mut task_iter = proc.tasks()?.flatten().map(|t| t.stat().unwrap().comm);
    ///
    /// # let (finish_tx, finish_rx) = channel();
    /// # let (start_tx, start_rx) = channel();
    /// let name = "testing:lazy";
    /// let t = thread::Builder::new().name(name.to_string())
    ///   .spawn(move || { // do work
    /// #     start_tx.send(()).unwrap();
    /// #     finish_rx.recv().expect("valid channel");
    ///   })?;
    /// # start_rx.recv()?;
    ///
    /// task_iter.find(|s| &**s == name).expect("thread should exist");
    ///
    /// # finish_tx.send(());
    /// # t.join().unwrap();
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// Tasks that stop while you're iterating may or may not appear:
    ///
    /// ```
    /// # use std::thread;
    /// # use std::sync::mpsc::channel;
    /// # use procfs::process::Process;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// # let (finish_tx, finish_rx) = channel();
    /// # let (start_tx, start_rx) = channel();
    /// let name = "testing:stopped";
    /// let t = thread::Builder::new().name(name.to_string())
    ///   .spawn(move || { // do work
    /// #     start_tx.send(()).unwrap();
    /// #     finish_rx.recv().expect("valid channel");
    ///   })?;
    /// # start_rx.recv()?;
    ///
    /// let proc = Process::myself()?;
    ///
    /// // Task iteration is lazy
    /// let mut task_iter = proc.tasks()?.flatten().map(|t| t.stat().unwrap().comm);
    ///
    /// # finish_tx.send(());
    /// t.join().unwrap();
    ///
    /// // It's impossible to know if this is going to be gone
    /// let _ = task_iter.find(|s| &**s == name).is_some();
    /// # Ok(())
    /// # }
    /// ```
    pub fn tasks(&self) -> ProcResult<TasksIter> {
        let task_path = self.root.join("task");
        let dir_fd = wrap_io_error!(
            &task_path,
            rustix::fs::openat(
                &self.fd,
                "task",
                OFlags::RDONLY | OFlags::DIRECTORY | OFlags::CLOEXEC,
                Mode::empty()
            )
        )?;
        let dir = wrap_io_error!(&task_path, rustix::fs::Dir::read_from(&dir_fd))?;
        Ok(TasksIter {
            pid: self.pid,
            inner: dir,
            inner_fd: dir_fd,
            root: task_path,
        })
    }

    /// Reads the tcp socket table from the process net namespace
    pub fn tcp(&self) -> ProcResult<Vec<TcpNetEntry>> {
        self.read_si("net/tcp").map(|net::TcpNetEntries(e)| e)
    }

    /// Reads the tcp6 socket table from the process net namespace
    pub fn tcp6(&self) -> ProcResult<Vec<TcpNetEntry>> {
        self.read_si("net/tcp6").map(|net::TcpNetEntries(e)| e)
    }

    /// Reads the udp socket table from the process net namespace
    pub fn udp(&self) -> ProcResult<Vec<UdpNetEntry>> {
        self.read_si("net/udp").map(|net::UdpNetEntries(e)| e)
    }

    /// Reads the udp6 socket table from the process net namespace
    pub fn udp6(&self) -> ProcResult<Vec<UdpNetEntry>> {
        self.read_si("net/udp6").map(|net::UdpNetEntries(e)| e)
    }

    /// Returns basic network device statistics for all interfaces in the process net namespace
    ///
    /// See also the [dev_status()](crate::net::dev_status()) function.
    pub fn dev_status(&self) -> ProcResult<HashMap<String, net::DeviceStatus>> {
        self.read("net/dev").map(|net::InterfaceDeviceStatus(e)| e)
    }

    /// Reads the unix socket table
    pub fn unix(&self) -> ProcResult<Vec<net::UnixNetEntry>> {
        self.read("net/unix").map(|net::UnixNetEntries(e)| e)
    }

    /// Reads the ARP table from the process net namespace
    pub fn arp(&self) -> ProcResult<Vec<net::ARPEntry>> {
        self.read("net/arp").map(|net::ArpEntries(e)| e)
    }

    /// Reads the ipv4 route table from the process net namespace
    pub fn route(&self) -> ProcResult<Vec<net::RouteEntry>> {
        self.read("net/route").map(|net::RouteEntries(e)| e)
    }

    /// Reads the network management information by Simple Network Management Protocol from the
    /// process net namespace
    pub fn snmp(&self) -> ProcResult<net::Snmp> {
        self.read("net/snmp")
    }

    /// Reads the network management information of IPv6 by Simple Network Management Protocol from
    /// the process net namespace
    pub fn snmp6(&self) -> ProcResult<net::Snmp6> {
        self.read("net/snmp6")
    }

    /// Opens a file to the process's memory (`/proc/<pid>/mem`).
    ///
    /// Note: you cannot start reading from the start of the file.  You must first seek to
    /// a mapped page.  See [Process::maps].
    ///
    /// Permission to access this file is governed by a ptrace access mode PTRACE_MODE_ATTACH_FSCREDS check
    ///
    /// # Example
    ///
    /// Find the offset of the "hello" string in the process's stack, and compare it to the
    /// pointer of the variable containing "hello"
    ///
    /// ```rust
    /// # use std::io::{Read, Seek, SeekFrom};
    /// # use procfs::process::{MMapPath, Process};
    /// let me = Process::myself().unwrap();
    /// let mut mem = me.mem().unwrap();
    /// let maps = me.maps().unwrap();
    ///
    /// let hello = "hello".to_string();
    ///
    /// for map in maps {
    ///     if map.pathname == MMapPath::Heap {
    ///         mem.seek(SeekFrom::Start(map.address.0)).unwrap();
    ///         let mut buf = vec![0; (map.address.1 - map.address.0) as usize];
    ///         mem.read_exact(&mut buf).unwrap();
    ///         let idx = buf.windows(5).position(|p| p == b"hello").unwrap();
    ///         assert_eq!(map.address.0 + idx as u64, hello.as_ptr() as u64);
    ///     }
    /// }
    /// ```
    pub fn mem(&self) -> ProcResult<File> {
        let file = FileWrapper::open_at(&self.root, &self.fd, "mem")?;
        Ok(file.inner())
    }

    /// Returns a file which is part of the process proc structure
    pub fn open_relative(&self, path: &str) -> ProcResult<File> {
        let file = FileWrapper::open_at(&self.root, &self.fd, path)?;
        Ok(file.inner())
    }

    /// Parse a file relative to the process proc structure.
    pub fn read<T: FromRead>(&self, path: &str) -> ProcResult<T> {
        FromRead::from_read(FileWrapper::open_at(&self.root, &self.fd, path)?)
    }

    /// Parse a file relative to the process proc structure.
    pub fn read_si<T: FromReadSI>(&self, path: &str) -> ProcResult<T> {
        FromReadSI::from_read(
            FileWrapper::open_at(&self.root, &self.fd, path)?,
            crate::current_system_info(),
        )
    }

    /// Clear reference bits
    ///
    /// See [ClearRefs] and [Process::pagemap()]
    pub fn clear_refs(&self, clear: ClearRefs) -> ProcResult<()> {
        write_value(self.root.join("clear_refs"), clear)
    }
}

/// The result of [`Process::fd`], iterates over all fds in a process
#[derive(Debug)]
pub struct FDsIter {
    inner: rustix::fs::Dir,
    inner_fd: rustix::fd::OwnedFd,
    root: PathBuf,
}

impl std::iter::Iterator for FDsIter {
    type Item = ProcResult<FDInfo>;
    fn next(&mut self) -> Option<ProcResult<FDInfo>> {
        loop {
            match self.inner.next() {
                Some(Ok(entry)) => {
                    let name = entry.file_name().to_string_lossy();
                    if let Ok(fd) = RawFd::from_str(&name) {
                        if let Ok(info) = FDInfo::from_process_at(&self.root, self.inner_fd.as_fd(), name.as_ref(), fd)
                        {
                            break Some(Ok(info));
                        }
                    }
                }
                Some(Err(e)) => break Some(Err(io::Error::from(e).into())),
                None => break None,
            }
        }
    }
}

/// The result of [`Process::tasks`], iterates over all tasks in a process
#[derive(Debug)]
pub struct TasksIter {
    pid: i32,
    inner: rustix::fs::Dir,
    inner_fd: rustix::fd::OwnedFd,
    root: PathBuf,
}

impl std::iter::Iterator for TasksIter {
    type Item = ProcResult<Task>;
    fn next(&mut self) -> Option<ProcResult<Task>> {
        loop {
            match self.inner.next() {
                Some(Ok(tp)) => {
                    if let Ok(tid) = i32::from_str(&tp.file_name().to_string_lossy()) {
                        if let Ok(task) =
                            Task::from_process_at(&self.root, self.inner_fd.as_fd(), tid.to_string(), self.pid, tid)
                        {
                            break Some(Ok(task));
                        }
                    }
                }
                Some(Err(e)) => break Some(Err(io::Error::from(e).into())),
                None => break None,
            }
        }
    }
}

/// Return a iterator of all processes
///
/// If a process can't be constructed for some reason, it will be returned as an `Err(ProcError)`
///
/// See also some important docs on the [ProcessesIter] struct.
///
/// Error handling example
/// ```
/// # use procfs::process::Process;
/// let all_processes: Vec<Process> = procfs::process::all_processes()
/// .expect("Can't read /proc")
/// .filter_map(|p| match p {
///     Ok(p) => Some(p),                                                // happy path
///     Err(e) => match e {
///         procfs::ProcError::NotFound(_) => None,                      // process vanished during iteration, ignore it
///         procfs::ProcError::Io(e, path) => None,                      // can match on path to decide if we can continue
///         x => {
///             println!("Can't read process due to error {x:?}"); // some unknown error
///             None
///         }
///     },
/// })
/// .collect();
/// ```
pub fn all_processes() -> ProcResult<ProcessesIter> {
    all_processes_with_root("/proc")
}

/// Return a list of all processes based on a specified `/proc` path
///
/// See [all_processes] for details and examples
///
/// See also some important docs on the [ProcessesIter] struct.
pub fn all_processes_with_root(root: impl AsRef<Path>) -> ProcResult<ProcessesIter> {
    let root = root.as_ref();
    let dir = wrap_io_error!(
        root,
        rustix::fs::openat(
            rustix::fs::CWD,
            root,
            OFlags::RDONLY | OFlags::DIRECTORY | OFlags::CLOEXEC,
            Mode::empty()
        )
    )?;
    let dir = wrap_io_error!(root, rustix::fs::Dir::read_from(dir))?;
    Ok(ProcessesIter {
        root: PathBuf::from(root),
        inner: dir,
    })
}

/// An iterator over all processes in the system.
///
/// **Note** This is a *lazy* iterator (like most iterators in rust).  You will likely want to consume
/// this iterator as quickly as possible if you want a "snapshot" of the system (though it won't be a
/// true snapshot).  Another important thing to keep in mind is that the [`Process`] struct holds an
/// open file descriptor to its corresponding `/proc/<pid>` directory.  See the docs for [`Process`]
/// for more information.
#[derive(Debug)]
pub struct ProcessesIter {
    root: PathBuf,
    inner: rustix::fs::Dir,
}

impl std::iter::Iterator for ProcessesIter {
    type Item = ProcResult<Process>;
    fn next(&mut self) -> Option<ProcResult<Process>> {
        loop {
            match self.inner.next() {
                Some(Ok(entry)) => {
                    if let Ok(pid) = i32::from_str(&entry.file_name().to_string_lossy()) {
                        break Some(Process::new_with_root(self.root.join(pid.to_string())));
                    }
                }
                Some(Err(e)) => break Some(Err(io::Error::from(e).into())),
                None => break None,
            }
        }
    }
}