1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use crate::{ProcError, ProcResult};

use std::collections::HashMap;
use std::io::BufRead;
use std::str::FromStr;

#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

/// Process limits
///
/// For more details about each of these limits, see the `getrlimit` man page.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Limits {
    /// Max Cpu Time
    ///
    /// This is a limit, in seconds, on the amount of CPU time that the process can consume.
    pub max_cpu_time: Limit,

    /// Max file size
    ///
    /// This is the maximum size in bytes of files that the process may create.
    pub max_file_size: Limit,

    /// Max data size
    ///
    /// This is the maximum size of the process's data segment (initialized data, uninitialized
    /// data, and heap).
    pub max_data_size: Limit,

    /// Max stack size
    ///
    /// This is the maximum size of the process stack, in bytes.
    pub max_stack_size: Limit,

    /// Max core file size
    ///
    /// This is the maximum size of a *core* file in bytes that the process may dump.
    pub max_core_file_size: Limit,

    /// Max resident set
    ///
    /// This is a limit (in bytes) on the process's resident set (the number of virtual pages
    /// resident in RAM).
    pub max_resident_set: Limit,

    /// Max processes
    ///
    /// This is a limit on the number of extant process (or, more precisely on Linux, threads) for
    /// the real user rID of the calling process.
    pub max_processes: Limit,

    /// Max open files
    ///
    /// This specifies a value one greater than the maximum file descriptor number that can be
    /// opened by this process.
    pub max_open_files: Limit,

    /// Max locked memory
    ///
    /// This is the maximum number of bytes of memory that may be locked into RAM.
    pub max_locked_memory: Limit,

    /// Max address space
    ///
    /// This is the maximum size of the process's virtual memory (address space).
    pub max_address_space: Limit,

    /// Max file locks
    ///
    /// This is a limit on the combined number of flock locks and fcntl leases that this process
    /// may establish.
    pub max_file_locks: Limit,

    /// Max pending signals
    ///
    /// This is a limit on the number of signals that may be queued for the real user rID of the
    /// calling process.
    pub max_pending_signals: Limit,

    /// Max msgqueue size
    ///
    /// This is a limit on the number of bytes that can be allocated for POSIX message queues for
    /// the real user rID of the calling process.
    pub max_msgqueue_size: Limit,

    /// Max nice priority
    ///
    /// This specifies a ceiling to which the process's nice value can be raised using
    /// `setpriority` or `nice`.
    pub max_nice_priority: Limit,

    /// Max realtime priority
    ///
    /// This specifies a ceiling on the real-time priority that may be set for this process using
    /// `sched_setscheduler` and `sched_setparam`.
    pub max_realtime_priority: Limit,

    /// Max realtime timeout
    ///
    /// This is a limit (in microseconds) on the amount of CPU time that a process scheduled under
    /// a real-time scheduling policy may consume without making a blocking system call.
    pub max_realtime_timeout: Limit,
}

impl crate::FromBufRead for Limits {
    fn from_buf_read<R: BufRead>(r: R) -> ProcResult<Self> {
        let mut lines = r.lines();

        let mut map = HashMap::new();

        while let Some(Ok(line)) = lines.next() {
            let line = line.trim();
            if line.starts_with("Limit") {
                continue;
            }
            let s: Vec<_> = line.split_whitespace().collect();
            let l = s.len();

            let (hard_limit, soft_limit, name) =
                if line.starts_with("Max nice priority") || line.starts_with("Max realtime priority") {
                    // these two limits don't have units, and so need different offsets:
                    let hard_limit = expect!(s.get(l - 1)).to_owned();
                    let soft_limit = expect!(s.get(l - 2)).to_owned();
                    let name = s[0..l - 2].join(" ");
                    (hard_limit, soft_limit, name)
                } else {
                    let hard_limit = expect!(s.get(l - 2)).to_owned();
                    let soft_limit = expect!(s.get(l - 3)).to_owned();
                    let name = s[0..l - 3].join(" ");
                    (hard_limit, soft_limit, name)
                };
            let _units = expect!(s.get(l - 1));

            map.insert(name.to_owned(), (soft_limit.to_owned(), hard_limit.to_owned()));
        }

        let limits = Limits {
            max_cpu_time: Limit::from_pair(expect!(map.remove("Max cpu time")))?,
            max_file_size: Limit::from_pair(expect!(map.remove("Max file size")))?,
            max_data_size: Limit::from_pair(expect!(map.remove("Max data size")))?,
            max_stack_size: Limit::from_pair(expect!(map.remove("Max stack size")))?,
            max_core_file_size: Limit::from_pair(expect!(map.remove("Max core file size")))?,
            max_resident_set: Limit::from_pair(expect!(map.remove("Max resident set")))?,
            max_processes: Limit::from_pair(expect!(map.remove("Max processes")))?,
            max_open_files: Limit::from_pair(expect!(map.remove("Max open files")))?,
            max_locked_memory: Limit::from_pair(expect!(map.remove("Max locked memory")))?,
            max_address_space: Limit::from_pair(expect!(map.remove("Max address space")))?,
            max_file_locks: Limit::from_pair(expect!(map.remove("Max file locks")))?,
            max_pending_signals: Limit::from_pair(expect!(map.remove("Max pending signals")))?,
            max_msgqueue_size: Limit::from_pair(expect!(map.remove("Max msgqueue size")))?,
            max_nice_priority: Limit::from_pair(expect!(map.remove("Max nice priority")))?,
            max_realtime_priority: Limit::from_pair(expect!(map.remove("Max realtime priority")))?,
            max_realtime_timeout: Limit::from_pair(expect!(map.remove("Max realtime timeout")))?,
        };
        if cfg!(test) {
            assert!(map.is_empty(), "Map isn't empty: {:?}", map);
        }
        Ok(limits)
    }
}

#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Limit {
    pub soft_limit: LimitValue,
    pub hard_limit: LimitValue,
}

impl Limit {
    fn from_pair(l: (String, String)) -> ProcResult<Limit> {
        let (soft, hard) = l;
        Ok(Limit {
            soft_limit: LimitValue::from_str(&soft)?,
            hard_limit: LimitValue::from_str(&hard)?,
        })
    }
}

#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum LimitValue {
    Unlimited,
    Value(u64),
}

impl FromStr for LimitValue {
    type Err = ProcError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s == "unlimited" {
            Ok(LimitValue::Unlimited)
        } else {
            Ok(LimitValue::Value(from_str!(u64, s)))
        }
    }
}