1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
pub(crate) mod arm_jtag;
pub(crate) mod common;
pub(crate) mod cmsisdap;
pub(crate) mod espusbjtag;
pub(crate) mod fake_probe;
#[cfg(feature = "ftdi")]
pub(crate) mod ftdi;
pub(crate) mod jlink;
pub(crate) mod stlink;
use self::espusbjtag::list_espjtag_devices;
use crate::architecture::arm::ArmError;
use crate::architecture::riscv::communication_interface::RiscvError;
use crate::error::Error;
use crate::Session;
use crate::{
architecture::arm::communication_interface::UninitializedArmProbe,
config::{RegistryError, TargetSelector},
};
use crate::{
architecture::{
arm::{
communication_interface::DapProbe,
sequences::{ArmDebugSequence, DefaultArmSequence},
PortType, SwoAccess,
},
riscv::communication_interface::RiscvCommunicationInterface,
},
Permissions,
};
use jlink::list_jlink_devices;
use probe_rs_target::ScanChainElement;
use std::{convert::TryFrom, fmt};
/// Used to log warnings when the measured target voltage is
/// lower than 1.4V, if at all measureable.
const LOW_TARGET_VOLTAGE_WARNING_THRESHOLD: f32 = 1.4;
/// The protocol that is to be used by the probe when communicating with the target.
///
/// For ARM select `Swd` and for RISC-V select `Jtag`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, serde::Serialize, serde::Deserialize)]
pub enum WireProtocol {
/// Serial Wire Debug is ARMs proprietary standard for communicating with ARM cores.
/// You can find specifics in the [`ARM Debug Interface v5.2`](https://developer.arm.com/documentation/ihi0031/f/?lang=en) specification.
Swd,
/// JTAG is a standard which is supported by many chips independent of architecture.
/// See [`Wikipedia`](https://en.wikipedia.org/wiki/JTAG) for more info.
Jtag,
}
impl fmt::Display for WireProtocol {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
WireProtocol::Swd => write!(f, "SWD"),
WireProtocol::Jtag => write!(f, "JTAG"),
}
}
}
impl std::str::FromStr for WireProtocol {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match &s.to_ascii_lowercase()[..] {
"swd" => Ok(WireProtocol::Swd),
"jtag" => Ok(WireProtocol::Jtag),
_ => Err(format!(
"'{s}' is not a valid protocol. Choose from [swd, jtag]."
)),
}
}
}
/// A command queued in a batch for later execution
///
/// Mostly used internally but returned in DebugProbeError to indicate
/// which batched command actually encountered the error.
#[derive(Copy, Clone, Debug)]
pub enum BatchCommand {
Read(PortType, u16),
Write(PortType, u16, u32),
}
impl fmt::Display for BatchCommand {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
BatchCommand::Read(port, addr) => write!(f, "Read(port={port:?}, addr={addr})"),
BatchCommand::Write(port, addr, data) => {
write!(f, "Write(port={port:?}, addr={addr}, data=0x{data:08x}")
}
}
}
}
/// This error occurs whenever the debug probe logic encounters an error while operating the relevant debug probe.
#[derive(thiserror::Error, Debug)]
pub enum DebugProbeError {
/// Something with the USB communication went wrong.
#[error("USB Communication Error")]
Usb(#[source] Option<Box<dyn std::error::Error + Send + Sync>>),
/// The firmware of the probe is outdated. This error is especially prominent with ST-Links.
/// You can use their official updater utility to update your probe firmware.
#[error("The firmware on the probe is outdated, and not supported by probe-rs.")]
ProbeFirmwareOutdated,
/// An error which is specific to the debug probe in use occurred.
#[error("An error specific to a probe type occurred")]
ProbeSpecific(#[source] Box<dyn std::error::Error + Send + Sync>),
/// The debug probe handle could not be created as specified.
#[error("Probe could not be created")]
ProbeCouldNotBeCreated(#[from] ProbeCreationError),
/// The selected wire protocol is not supported with given probe.
#[error("Probe does not support {0}")]
UnsupportedProtocol(WireProtocol),
/// The selected probe does not support the selected interface.
/// This happens if a probe does not support certain functionality, such as:
/// - ARM debugging
/// - RISC-V debugging
/// - SWO
#[error("The connected probe does not support the interface '{0}'")]
InterfaceNotAvailable(&'static str),
/// Some interaction with the target registry failed.
/// This happens when an invalid chip name is given for example.
#[error("An error occurred while working with the registry")]
Registry(#[from] RegistryError),
/// The debug probe does not support the speed that was chosen.
/// Try to alter the selected speed.
#[error("The requested speed setting ({0} kHz) is not supported by the probe")]
UnsupportedSpeed(u32),
/// The debug probe did not yet perform the init sequence.
/// Try calling [`DebugProbe::attach`] before trying again.
#[error("You need to be attached to the target to perform this action")]
NotAttached,
/// The debug probe already performed the init sequence.
/// Try runnoing the failing command before [`DebugProbe::attach`].
#[error("You need to be detached from the target to perform this action")]
Attached,
/// Performing the init sequence on the target failed.
/// Check the wiring before continuing.
#[error("Failed to find the target or attach to the target")]
TargetNotFound,
/// The variant of the function you called is not yet implemented.
/// This can happen if some debug probe has some unimplemented functionality for a specific protocol or architecture.
#[error("Some functionality was not implemented yet: {0}")]
NotImplemented(&'static str),
/// The called debug sequence is not supported on given probe.
/// This is most likely happening because you are using an ST-Link, which are severely limited in functionality.
/// If possible, try using another probe.
#[error("This debug sequence is not supported on the used probe: {0}")]
DebugSequenceNotSupported(&'static str),
/// An error occurred during the previously batched command.
#[error("Error in previous batched command")]
BatchError(BatchCommand),
/// The used functionality is not supported by the selected probe.
/// This can happen when a probe does not allow for setting speed manually for example.
#[error("Command not supported by probe: {0}")]
CommandNotSupportedByProbe(&'static str),
/// Some other error occurred.
#[error(transparent)]
Other(#[from] anyhow::Error),
/// A timeout occurred during probe operation.
#[error("Timeout occurred during probe operation.")]
Timeout,
}
/// An error during probe creation accured.
/// This is almost always a sign of a bad USB setup.
/// Check UDEV rules if you are on Linux and try installing Zadig
/// (This will disable vendor specific drivers for your probe!) if you are on Windows.
#[derive(thiserror::Error, Debug)]
pub enum ProbeCreationError {
/// The selected debug probe was not found.
/// This can be due to permissions.
#[error("Probe was not found.")]
NotFound,
/// The selected probe USB device could not be opened.
/// Make sure you have all necessary permissions.
#[error("USB device could not be opened. Please check the permissions.")]
CouldNotOpen,
/// Some error with HID API occurred.
#[error("{0}")]
HidApi(#[from] hidapi::HidError),
/// Some error with rusb occurred.
#[error("{0}")]
Rusb(#[from] rusb::Error),
/// An error specific with the selected probe occurred.
#[error("An error specific to a probe type occurred: {0}")]
ProbeSpecific(#[source] Box<dyn std::error::Error + Send + Sync>),
/// Something else happened.
#[error("{0}")]
Other(&'static str),
}
/// The Probe struct is a generic wrapper over the different
/// probes supported.
///
/// # Examples
///
/// ## Open the first probe found
///
/// The `list_all` and `from_probe_info` functions can be used
/// to create a new `Probe`:
///
/// ```no_run
/// use probe_rs::Probe;
///
/// let probe_list = Probe::list_all();
/// let probe = Probe::open(&probe_list[0]);
/// ```
#[derive(Debug)]
pub struct Probe {
inner: Box<dyn DebugProbe>,
attached: bool,
}
impl Probe {
/// Create a new probe from a more specific probe driver.
pub fn new(probe: impl DebugProbe + 'static) -> Self {
Self {
inner: Box::new(probe),
attached: false,
}
}
pub(crate) fn from_attached_probe(probe: Box<dyn DebugProbe>) -> Self {
Self {
inner: probe,
attached: true,
}
}
/// Same as [`Probe::new`] but without automatic boxing in case you already have a box.
pub fn from_specific_probe(probe: Box<dyn DebugProbe>) -> Self {
Probe {
inner: probe,
attached: false,
}
}
/// Get a list of all debug probes found.
/// This can be used to select the debug probe which
/// should be used.
#[tracing::instrument]
pub fn list_all() -> Vec<DebugProbeInfo> {
let mut list = cmsisdap::tools::list_cmsisdap_devices();
#[cfg(feature = "ftdi")]
{
list.extend(ftdi::list_ftdi_devices());
}
list.extend(stlink::tools::list_stlink_devices());
list.extend(list_jlink_devices());
list.extend(list_espjtag_devices());
list
}
/// Create a [`Probe`] from [`DebugProbeInfo`]. Use the
/// [`Probe::list_all()`] function to get the information
/// about all probes available.
#[tracing::instrument(skip_all)]
pub fn open(selector: impl Into<DebugProbeSelector> + Clone) -> Result<Self, DebugProbeError> {
match cmsisdap::CmsisDap::new_from_selector(selector.clone()) {
Ok(link) => return Ok(Probe::from_specific_probe(link)),
Err(DebugProbeError::ProbeCouldNotBeCreated(ProbeCreationError::NotFound)) => {}
Err(e) => return Err(e),
};
#[cfg(feature = "ftdi")]
match ftdi::FtdiProbe::new_from_selector(selector.clone()) {
Ok(link) => return Ok(Probe::from_specific_probe(link)),
Err(DebugProbeError::ProbeCouldNotBeCreated(ProbeCreationError::NotFound)) => {}
Err(e) => return Err(e),
};
match stlink::StLink::new_from_selector(selector.clone()) {
Ok(link) => return Ok(Probe::from_specific_probe(link)),
Err(DebugProbeError::ProbeCouldNotBeCreated(ProbeCreationError::NotFound)) => {}
Err(e) => return Err(e),
};
match jlink::JLink::new_from_selector(selector.clone()) {
Ok(link) => return Ok(Probe::from_specific_probe(link)),
Err(DebugProbeError::ProbeCouldNotBeCreated(ProbeCreationError::NotFound)) => {}
Err(e) => return Err(e),
};
match espusbjtag::EspUsbJtag::new_from_selector(selector) {
Ok(link) => return Ok(Probe::from_specific_probe(link)),
Err(DebugProbeError::ProbeCouldNotBeCreated(ProbeCreationError::NotFound)) => {}
Err(e) => return Err(e),
};
Err(DebugProbeError::ProbeCouldNotBeCreated(
ProbeCreationError::NotFound,
))
}
/// Get the human readable name for the probe.
pub fn get_name(&self) -> String {
self.inner.get_name().to_string()
}
/// Attach to the chip.
///
/// This runs all the necessary protocol init routines.
///
/// If this doesn't work, you might want to try [`Probe::attach_under_reset`]
pub fn attach(
mut self,
target: impl Into<TargetSelector>,
permissions: Permissions,
) -> Result<Session, Error> {
self.attached = true;
Session::new(self, target.into(), AttachMethod::Normal, permissions)
}
/// Attach to a target without knowing what target you have at hand.
/// This can be used for automatic device discovery or performing operations on an unspecified target.
pub fn attach_to_unspecified(&mut self) -> Result<(), Error> {
self.inner.attach()?;
self.attached = true;
Ok(())
}
/// A combination of [`Probe::attach_to_unspecified`] and [`Probe::attach_under_reset`].
pub fn attach_to_unspecified_under_reset(&mut self) -> Result<(), Error> {
if let Some(dap_probe) = self.try_as_dap_probe() {
DefaultArmSequence(()).reset_hardware_assert(dap_probe)?;
} else {
tracing::info!(
"Custom reset sequences are not supported on {}.",
self.get_name()
);
tracing::info!("Falling back to standard probe reset.");
self.target_reset_assert()?;
}
self.inner_attach()?;
Ok(())
}
/// Attach to the chip under hard-reset.
///
/// This asserts the reset pin via the probe, plays the protocol init routines and deasserts the pin.
/// This is necessary if the chip is not responding to the SWD reset sequence.
/// For example this can happen if the chip has the SWDIO pin remapped.
pub fn attach_under_reset(
mut self,
target: impl Into<TargetSelector>,
permissions: Permissions,
) -> Result<Session, Error> {
self.attached = true;
// The session will de-assert reset after connecting to the debug interface.
Session::new(self, target.into(), AttachMethod::UnderReset, permissions).map_err(|e| {
if matches!(e, Error::Arm(ArmError::Timeout) | Error::Riscv(RiscvError::Timeout)) {
Error::Other(
anyhow::anyhow!("Timeout while attaching to target under reset. This can happen if the target is not responding to the reset sequence. Ensure the chip's reset pin is connected, or try attaching without reset (`connectUnderReset = false` for DAP Clients, or remove `connect-under-reset` option from CLI options.)."))
} else {
e
}
})
}
pub(crate) fn inner_attach(&mut self) -> Result<(), DebugProbeError> {
self.inner.attach()
}
/// Selects the transport protocol to be used by the debug probe.
pub fn select_protocol(&mut self, protocol: WireProtocol) -> Result<(), DebugProbeError> {
if !self.attached {
self.inner.select_protocol(protocol)
} else {
Err(DebugProbeError::Attached)
}
}
/// Get the currently selected protocol
///
/// Depending on the probe, this might not be available.
pub fn protocol(&self) -> Option<WireProtocol> {
self.inner.active_protocol()
}
/// Leave debug mode
pub fn detach(&mut self) -> Result<(), crate::Error> {
self.attached = false;
self.inner.detach()?;
Ok(())
}
/// Resets the target device.
pub fn target_reset(&mut self) -> Result<(), DebugProbeError> {
self.inner.target_reset()
}
/// Asserts the reset of the target.
/// This is always the hard reset which means the reset wire has to be connected to work.
///
/// This is not supported on all probes.
pub fn target_reset_assert(&mut self) -> Result<(), DebugProbeError> {
tracing::debug!("Asserting target reset");
self.inner.target_reset_assert()
}
/// Deasserts the reset of the target.
/// This is always the hard reset which means the reset wire has to be connected to work.
///
/// This is not supported on all probes.
pub fn target_reset_deassert(&mut self) -> Result<(), DebugProbeError> {
tracing::debug!("Deasserting target reset");
self.inner.target_reset_deassert()
}
/// Configure protocol speed to use in kHz
pub fn set_speed(&mut self, speed_khz: u32) -> Result<u32, DebugProbeError> {
if !self.attached {
self.inner.set_speed(speed_khz)
} else {
Err(DebugProbeError::Attached)
}
}
/// Configure the scan chain to use for the attached target.
///
/// See [`DebugProbe::set_scan_chain`] for more information and usage
pub fn set_scan_chain(
&mut self,
scan_chain: Vec<ScanChainElement>,
) -> Result<(), DebugProbeError> {
if self.attached {
self.inner.set_scan_chain(scan_chain)
} else {
Err(DebugProbeError::Attached)
}
}
/// Get the currently used maximum speed for the debug protocol in kHz.
///
/// Not all probes report which speed is used, meaning this value is not
/// always the actual speed used. However, the speed should not be any
/// higher than this value.
pub fn speed_khz(&self) -> u32 {
self.inner.speed_khz()
}
/// Check if the probe has an interface to
/// debug ARM chips.
pub fn has_arm_interface(&self) -> bool {
self.inner.has_arm_interface()
}
/// Try to get a trait object implementing `UninitializedArmProbe`, which can
/// can be used to communicate with chips using the ARM architecture.
///
/// If an error occurs while trying to connect, the probe is returned.
pub fn try_into_arm_interface<'probe>(
self,
) -> Result<Box<dyn UninitializedArmProbe + 'probe>, (Self, DebugProbeError)> {
if !self.attached {
Err((self, DebugProbeError::NotAttached))
} else {
self.inner
.try_get_arm_interface()
.map_err(|(probe, err)| (Probe::from_attached_probe(probe), err))
}
}
/// Check if the probe has an interface to
/// debug RISCV chips.
pub fn has_riscv_interface(&self) -> bool {
self.inner.has_riscv_interface()
}
/// Try to get a [`RiscvCommunicationInterface`], which can
/// can be used to communicate with chips using the RISCV
/// architecture.
///
/// If an error occurs while trying to connect, the probe is returned.
pub fn try_into_riscv_interface(
self,
) -> Result<RiscvCommunicationInterface, (Self, RiscvError)> {
if !self.attached {
Err((self, DebugProbeError::NotAttached.into()))
} else {
self.inner
.try_get_riscv_interface()
.map_err(|(probe, err)| (Probe::from_attached_probe(probe), err))
}
}
/// Gets a SWO interface from the debug probe.
///
/// This does not work on all probes.
pub fn get_swo_interface(&self) -> Option<&dyn SwoAccess> {
self.inner.get_swo_interface()
}
/// Gets a mutable SWO interface from the debug probe.
///
/// This does not work on all probes.
pub fn get_swo_interface_mut(&mut self) -> Option<&mut dyn SwoAccess> {
self.inner.get_swo_interface_mut()
}
/// Gets a DAP interface from the debug probe.
///
/// This does not work on all probes.
pub fn try_as_dap_probe(&mut self) -> Option<&mut dyn DapProbe> {
self.inner.try_as_dap_probe()
}
/// Try reading the target voltage of via the connected volgate pin.
///
/// This does not work on all probes.
pub fn get_target_voltage(&mut self) -> Result<Option<f32>, DebugProbeError> {
self.inner.get_target_voltage()
}
}
/// An abstraction over general debug probe functionality.
///
/// This trait has to be implemented by ever debug probe driver.
pub trait DebugProbe: Send + fmt::Debug {
/// Creates a new boxed [`DebugProbe`] from a given [`DebugProbeSelector`].
/// This will be called for all available debug drivers when discovering probes.
/// When opening, it will open the first probe which succeds during this call.
fn new_from_selector(
selector: impl Into<DebugProbeSelector>,
) -> Result<Box<Self>, DebugProbeError>
where
Self: Sized;
/// Get human readable name for the probe.
fn get_name(&self) -> &str;
/// Get the currently used maximum speed for the debug protocol in kHz.
///
/// Not all probes report which speed is used, meaning this value is not
/// always the actual speed used. However, the speed should not be any
/// higher than this value.
fn speed_khz(&self) -> u32;
/// Set the speed in kHz used for communication with the target device.
///
/// The desired speed might not be supported by the probe. If the desired
/// speed is not directly supported, a lower speed will be selected if possible.
///
/// If possible, the actual speed used is returned by the function. Some probes
/// cannot report this, so the value may be inaccurate.
///
/// If the requested speed is not supported,
/// `DebugProbeError::UnsupportedSpeed` will be returned.
///
fn set_speed(&mut self, speed_khz: u32) -> Result<u32, DebugProbeError>;
/// Set the JTAG scan chain information for the target under debug.
///
/// This allows the probe to know which TAPs are in the scan chain and their
/// position and IR lengths.
///
/// If the scan chain is provided, and the selected protocol is JTAG, the
/// probe will automatically configure the JTAG interface to match the
/// scan chain configuration without trying to deteremine the chain at
/// runtime.
///
/// This is called by the `Session` when attaching to a target.
/// So this does not need to be called manually, unless you want to
/// modify the scan chain. You must be attached to a target to set the
/// scan_chain since the scan chain only applys to the attached target.
///
fn set_scan_chain(&mut self, scan_chain: Vec<ScanChainElement>) -> Result<(), DebugProbeError>;
/// Attach to the chip.
///
/// This should run all the necessary protocol init routines.
fn attach(&mut self) -> Result<(), DebugProbeError>;
/// Detach from the chip.
///
/// This should run all the necessary protocol deinit routines.
///
/// If the probe uses batched commands, this will also cause all
/// remaining commands to be executed. If an error occurs during
/// this execution, the probe might remain in the attached state.
fn detach(&mut self) -> Result<(), crate::Error>;
/// This should hard reset the target device.
fn target_reset(&mut self) -> Result<(), DebugProbeError>;
/// This should assert the reset pin of the target via debug probe.
fn target_reset_assert(&mut self) -> Result<(), DebugProbeError>;
/// This should deassert the reset pin of the target via debug probe.
fn target_reset_deassert(&mut self) -> Result<(), DebugProbeError>;
/// Selects the transport protocol to be used by the debug probe.
fn select_protocol(&mut self, protocol: WireProtocol) -> Result<(), DebugProbeError>;
/// Get the transport protocol currently in active use by the debug probe.
fn active_protocol(&self) -> Option<WireProtocol>;
/// Check if the proble offers an interface to debug ARM chips.
fn has_arm_interface(&self) -> bool {
false
}
/// Get the dedicated interface to debug ARM chips. To check that the
/// probe actually supports this, call [DebugProbe::has_arm_interface] first.
fn try_get_arm_interface<'probe>(
self: Box<Self>,
) -> Result<Box<dyn UninitializedArmProbe + 'probe>, (Box<dyn DebugProbe>, DebugProbeError)>
{
Err((
self.into_probe(),
DebugProbeError::InterfaceNotAvailable("ARM"),
))
}
/// Get the dedicated interface to debug RISCV chips. Ensure that the
/// probe actually supports this by calling [DebugProbe::has_riscv_interface] first.
fn try_get_riscv_interface(
self: Box<Self>,
) -> Result<RiscvCommunicationInterface, (Box<dyn DebugProbe>, RiscvError)> {
Err((
self.into_probe(),
DebugProbeError::InterfaceNotAvailable("RISCV").into(),
))
}
/// Check if the probe offers an interface to debug RISCV chips.
fn has_riscv_interface(&self) -> bool {
false
}
/// Get a SWO interface from the debug probe.
///
/// This is not available on all debug probes.
fn get_swo_interface(&self) -> Option<&dyn SwoAccess> {
None
}
/// Get a mutable SWO interface from the debug probe.
///
/// This is not available on all debug probes.
fn get_swo_interface_mut(&mut self) -> Option<&mut dyn SwoAccess> {
None
}
/// Boxes itself.
fn into_probe(self: Box<Self>) -> Box<dyn DebugProbe>;
/// Try creating a DAP interface for the given probe.
///
/// This is not available on all probes.
fn try_as_dap_probe(&mut self) -> Option<&mut dyn DapProbe> {
None
}
/// Reads the target voltage in Volts, if possible. Returns `Ok(None)`
/// if the probe doesn’t support reading the target voltage.
fn get_target_voltage(&mut self) -> Result<Option<f32>, DebugProbeError> {
Ok(None)
}
}
/// Denotes the type of a given [`DebugProbe`].
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum DebugProbeType {
/// CMSIS-DAP
CmsisDap,
/// FTDI based debug probe
Ftdi,
/// ST-Link
StLink,
/// J-Link
JLink,
/// Built in RISC-V ESP JTAG debug probe
EspJtag,
}
/// Gathers some information about a debug probe which was found during a scan.
#[derive(Clone, PartialEq, Eq)]
pub struct DebugProbeInfo {
/// The name of the debug probe.
pub identifier: String,
/// The USB vendor ID of the debug probe.
pub vendor_id: u16,
/// The USB product ID of the debug probe.
pub product_id: u16,
/// The serial number of the debug probe.
pub serial_number: Option<String>,
/// The probe type of the debug probe.
pub probe_type: DebugProbeType,
/// The USB HID interface which should be used.
/// This is necessary for composite HID devices.
pub hid_interface: Option<u8>,
}
impl std::fmt::Debug for DebugProbeInfo {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"{} (VID: {:04x}, PID: {:04x}, {}{:?})",
self.identifier,
self.vendor_id,
self.product_id,
self.serial_number
.clone()
.map_or("".to_owned(), |v| format!("Serial: {v}, ")),
self.probe_type
)
}
}
impl DebugProbeInfo {
/// Creates a new info struct that uniquely identifies a probe.
pub fn new<S: Into<String>>(
identifier: S,
vendor_id: u16,
product_id: u16,
serial_number: Option<String>,
probe_type: DebugProbeType,
usb_hid_interface: Option<u8>,
) -> Self {
Self {
identifier: identifier.into(),
vendor_id,
product_id,
serial_number,
probe_type,
hid_interface: usb_hid_interface,
}
}
/// Open the probe described by this `DebugProbeInfo`.
pub fn open(&self) -> Result<Probe, DebugProbeError> {
Probe::open(self)
}
}
#[derive(thiserror::Error, Debug)]
pub enum DebugProbeSelectorParseError {
#[error("The VID or PID could not be parsed: {0}")]
ParseInt(#[from] std::num::ParseIntError),
#[error("Please use a string in the form `VID:PID:<Serial>` where Serial is optional.")]
Format,
}
/// A struct to describe the way a probe should be selected.
///
/// Construct this from a set of info or from a string. The
/// string has to be in the format "VID:PID:SERIALNUMBER",
/// where the serialnumber is optional, and VID and PID are
/// parsed as hexadecimal numbers.
///
/// ## Example:
///
/// ```
/// use std::convert::TryInto;
/// let selector: probe_rs::DebugProbeSelector = "1942:1337:SERIAL".try_into().unwrap();
///
/// assert_eq!(selector.vendor_id, 0x1942);
/// assert_eq!(selector.product_id, 0x1337);
/// ```
#[derive(Debug, Clone, Serialize, Deserialize)]
// We need this so that serde will first convert from the string `VID:PID:<Serial>` to a struct before deserializing.
#[serde(try_from = "String")]
pub struct DebugProbeSelector {
/// The the USB vendor id of the debug probe to be used.
pub vendor_id: u16,
/// The the USB product id of the debug probe to be used.
pub product_id: u16,
/// The the serial number of the debug probe to be used.
pub serial_number: Option<String>,
}
impl TryFrom<&str> for DebugProbeSelector {
type Error = DebugProbeSelectorParseError;
fn try_from(value: &str) -> Result<Self, Self::Error> {
let split = value.split(':').collect::<Vec<_>>();
let mut selector = if split.len() > 1 {
DebugProbeSelector {
vendor_id: u16::from_str_radix(split[0], 16)?,
product_id: u16::from_str_radix(split[1], 16)?,
serial_number: None,
}
} else {
return Err(DebugProbeSelectorParseError::Format);
};
if split.len() == 3 {
selector.serial_number = Some(split[2].to_string());
}
Ok(selector)
}
}
impl TryFrom<String> for DebugProbeSelector {
type Error = DebugProbeSelectorParseError;
fn try_from(value: String) -> Result<Self, Self::Error> {
TryFrom::<&str>::try_from(&value)
}
}
impl std::str::FromStr for DebugProbeSelector {
type Err = DebugProbeSelectorParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::try_from(s)
}
}
impl From<DebugProbeInfo> for DebugProbeSelector {
fn from(selector: DebugProbeInfo) -> Self {
DebugProbeSelector {
vendor_id: selector.vendor_id,
product_id: selector.product_id,
serial_number: selector.serial_number,
}
}
}
impl From<&DebugProbeInfo> for DebugProbeSelector {
fn from(selector: &DebugProbeInfo) -> Self {
DebugProbeSelector {
vendor_id: selector.vendor_id,
product_id: selector.product_id,
serial_number: selector.serial_number.clone(),
}
}
}
impl fmt::Display for DebugProbeSelector {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:04x}:{:04x}", self.vendor_id, self.product_id)?;
if let Some(ref sn) = self.serial_number {
write!(f, ":{sn}")?;
}
Ok(())
}
}
/// Low-Level Access to the JTAG protocol
///
/// This trait should be implemented by all probes which offer low-level access to
/// the JTAG protocol, i.e. directo control over the bytes sent and received.
pub trait JTAGAccess: DebugProbe {
fn read_register(&mut self, address: u32, len: u32) -> Result<Vec<u8>, DebugProbeError>;
/// For Riscv, and possibly other interfaces, the JTAG interface has to remain in
/// the idle state for several cycles between consecutive accesses to the DR register.
///
/// This function configures the number of idle cycles which are inserted after each access.
fn set_idle_cycles(&mut self, idle_cycles: u8);
/// Return the currently configured idle cycles.
fn get_idle_cycles(&self) -> u8;
/// Set the IR register length
fn set_ir_len(&mut self, len: u32);
/// Write to a JTAG register
///
/// This function will perform a write to the IR register, if necessary,
/// to select the correct register, and then to the DR register, to transmit the
/// data. The data shifted out of the DR register will be returned.
fn write_register(
&mut self,
address: u32,
data: &[u8],
len: u32,
) -> Result<Vec<u8>, DebugProbeError>;
fn write_register_batch(
&mut self,
writes: &[JtagWriteCommand],
) -> Result<Vec<CommandResult>, BatchExecutionError> {
tracing::debug!("Using default `JTAGAccess::write_register_batch` this will hurt performance. Please implement proper batching for this probe.");
let mut results = Vec::new();
for write in writes {
match self
.write_register(write.address, &write.data, write.len)
.map_err(crate::Error::Probe)
.and_then(|response| (write.transform)(response))
{
Ok(res) => results.push(res),
Err(e) => return Err(BatchExecutionError::new(e, results.clone())),
}
}
Ok(results)
}
}
pub type DeferredResultIndex = usize;
#[derive(Debug, Clone)]
pub struct JtagWriteCommand {
pub address: u32,
pub data: Vec<u8>,
pub len: u32,
pub transform: fn(Vec<u8>) -> Result<CommandResult, crate::Error>,
}
#[derive(thiserror::Error, Debug)]
pub struct BatchExecutionError {
#[source]
pub error: crate::Error,
pub results: Vec<CommandResult>,
}
impl BatchExecutionError {
pub fn new(error: crate::Error, results: Vec<CommandResult>) -> BatchExecutionError {
BatchExecutionError { error, results }
}
}
impl std::fmt::Display for BatchExecutionError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Error cause was {}. Successful command count {}",
self.error,
self.results.len()
)
}
}
/// Results generated by `JtagCommand`s
#[derive(Debug, Clone)]
pub enum CommandResult {
None,
U8(u8),
U16(u16),
U32(u32),
VecU8(Vec<u8>),
}
/// The method that should be used for attaching.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub enum AttachMethod {
/// Attach normally with no special behavior.
Normal,
/// Attach to the target while it is in reset.
///
/// This is required on targets that can remap SWD pins or disable the SWD interface in sleep.
UnderReset,
}