1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
use super::{reset_catch_clear, reset_catch_set, CortexState, Dfsr, ARM_REGISTER_FILE};
use crate::core::{
    Architecture, CoreInformation, CoreInterface, CoreRegister, CoreRegisterAddress,
    RegisterDescription, RegisterFile, RegisterKind,
};
use crate::error::Error;
use crate::memory::Memory;
use crate::{CoreStatus, DebugProbeError, HaltReason, MemoryInterface};
use anyhow::{anyhow, Result};
use bitfield::bitfield;
use log::debug;
use std::{
    mem::size_of,
    time::{Duration, Instant},
};

bitfield! {
    #[derive(Copy, Clone)]
    pub struct Dhcsr(u32);
    impl Debug;
    pub s_reset_st, _: 25;
    pub s_retire_st, _: 24;
    pub s_lockup, _: 19;
    pub s_sleep, _: 18;
    pub s_halt, _: 17;
    pub s_regrdy, _: 16;
    pub c_maskings, set_c_maskints: 3;
    pub c_step, set_c_step: 2;
    pub c_halt, set_c_halt: 1;
    pub c_debugen, set_c_debugen: 0;
}

impl Dhcsr {
    /// This function sets the bit to enable writes to this register.
    ///
    /// C1.6.3 Debug Halting Control and Status Register, DHCSR:
    /// Debug key:
    /// Software must write 0xA05F to this field to enable write accesses to bits
    /// [15:0], otherwise the processor ignores the write access.
    pub fn enable_write(&mut self) {
        self.0 &= !(0xffff << 16);
        self.0 |= 0xa05f << 16;
    }
}

impl From<u32> for Dhcsr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dhcsr> for u32 {
    fn from(value: Dhcsr) -> Self {
        value.0
    }
}

impl CoreRegister for Dhcsr {
    const ADDRESS: u32 = 0xE000_EDF0;
    const NAME: &'static str = "DHCSR";
}

bitfield! {
    #[derive(Copy, Clone)]
    pub struct Dcrsr(u32);
    impl Debug;
    pub _, set_regwnr: 16;
    pub _, set_regsel: 4,0;
}

impl From<u32> for Dcrsr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dcrsr> for u32 {
    fn from(value: Dcrsr) -> Self {
        value.0
    }
}

impl CoreRegister for Dcrsr {
    const ADDRESS: u32 = 0xE000_EDF4;
    const NAME: &'static str = "DCRSR";
}

#[derive(Debug, Copy, Clone)]
pub struct Dcrdr(u32);

impl From<u32> for Dcrdr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dcrdr> for u32 {
    fn from(value: Dcrdr) -> Self {
        value.0
    }
}

impl CoreRegister for Dcrdr {
    const ADDRESS: u32 = 0xE000_EDF8;
    const NAME: &'static str = "DCRDR";
}

bitfield! {
    #[derive(Copy, Clone)]
    pub struct BpCtrl(u32);
    impl Debug;
    /// The number of breakpoint comparators. If NUM_CODE is zero, the implementation does not support any comparators
    pub num_code, _: 7, 4;
    /// RAZ on reads, SBO, for writes. If written as zero, the write to the register is ignored.
    pub key, set_key: 1;
    /// Enables the BPU:
    /// 0 BPU is disabled.
    /// 1 BPU is enabled.
    /// This bit is set to 0 on a power-on reset
    pub _, set_enable: 0;
}

impl From<u32> for BpCtrl {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<BpCtrl> for u32 {
    fn from(value: BpCtrl) -> Self {
        value.0
    }
}

impl CoreRegister for BpCtrl {
    const ADDRESS: u32 = 0xE000_2000;
    const NAME: &'static str = "BP_CTRL";
}

bitfield! {
    #[derive(Copy, Clone)]
    pub struct BpCompx(u32);
    impl Debug;
    /// BP_MATCH defines the behavior when the COMP address is matched:
    /// - 00 no breakpoint matching.
    /// - 01 breakpoint on lower halfword, upper is unaffected.
    /// - 10 breakpoint on upper halfword, lower is unaffected.
    /// - 11 breakpoint on both lower and upper halfwords.
    /// - The field is UNKNOWN on reset.
    pub _, set_bp_match: 31,30;
    /// Stores bits [28:2] of the comparison address. The comparison address is
    /// compared with the address from the Code memory region. Bits [31:29] and
    /// [1:0] of the comparison address are zero.
    /// The field is UNKNOWN on power-on reset.
    pub _, set_comp: 28,2;
    /// Enables the comparator:
    /// 0 comparator is disabled.
    /// 1 comparator is enabled.
    /// This bit is set to 0 on a power-on reset.
    pub _, set_enable: 0;
}

impl From<u32> for BpCompx {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<BpCompx> for u32 {
    fn from(value: BpCompx) -> Self {
        value.0
    }
}

impl CoreRegister for BpCompx {
    const ADDRESS: u32 = 0xE000_2008;
    const NAME: &'static str = "BP_CTRL0";
}

bitfield! {
    #[derive(Copy, Clone)]
    pub struct Aircr(u32);
    impl Debug;
    pub get_vectkeystat, set_vectkey: 31,16;
    pub endianness, set_endianness: 15;
    pub sysresetreq, set_sysresetreq: 2;
    pub vectclractive, set_vectclractive: 1;
}

impl From<u32> for Aircr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Aircr> for u32 {
    fn from(value: Aircr) -> Self {
        value.0
    }
}

impl Aircr {
    pub fn vectkey(&mut self) {
        self.set_vectkey(0x05FA);
    }

    pub fn vectkeystat(&self) -> bool {
        self.get_vectkeystat() == 0xFA05
    }
}

impl CoreRegister for Aircr {
    const ADDRESS: u32 = 0xE000_ED0C;
    const NAME: &'static str = "AIRCR";
}

bitfield! {
    #[derive(Copy, Clone)]
    pub struct Demcr(u32);
    impl Debug;
    /// Global enable for DWT.
    /// Enables:
    /// - Data Watchpoint and Trace (DWT)
    /// - Instrumentation Trace Macrocell (ITM)
    /// - Embedded Trace Macrocell (ETM)
    /// - Trace Port Interface Unit (TPIU).
    pub dwtena, set_dwtena: 24;
    /// Enable halting debug trap on a HardFault exception
    pub vc_harderr, set_vc_harderr: 10;
    /// Enable Reset Vector Catch
    pub vc_corereset, set_vc_corereset: 0;
}

impl From<u32> for Demcr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Demcr> for u32 {
    fn from(value: Demcr) -> Self {
        value.0
    }
}

impl CoreRegister for Demcr {
    const ADDRESS: u32 = 0xe000_edfc;
    const NAME: &'static str = "DEMCR";
}

/*
const REGISTERS: RegisterFile = RegisterFile {
    registers:
    R0: CoreRegisterAddress(0b0_0000),
    R1: CoreRegisterAddress(0b0_0001),
    R2: CoreRegisterAddress(0b0_0010),
    R3: CoreRegisterAddress(0b0_0011),
    R4: CoreRegisterAddress(0b0_0100),
    R5: CoreRegisterAddress(0b0_0101),
    R6: CoreRegisterAddress(0b0_0110),
    R7: CoreRegisterAddress(0b0_0111),
    R8: CoreRegisterAddress(0b0_1000),
    R9: CoreRegisterAddress(0b0_1001),
    PC: CoreRegisterAddress(0b0_1111),
    SP: CoreRegisterAddress(0b0_1101),
    LR: CoreRegisterAddress(0b0_1110),
    XPSR: CoreRegisterAddress(0b1_0000),
};
*/

pub const MSP: CoreRegisterAddress = CoreRegisterAddress(0b01001);
pub const PSP: CoreRegisterAddress = CoreRegisterAddress(0b01010);

const PC: RegisterDescription = RegisterDescription {
    name: "PC",
    kind: RegisterKind::PC,
    address: CoreRegisterAddress(0b0_1111),
};

const XPSR: RegisterDescription = RegisterDescription {
    name: "XPSR",
    kind: RegisterKind::General,
    address: CoreRegisterAddress(0b1_0000),
};

pub struct M0<'probe> {
    memory: Memory<'probe>,

    state: &'probe mut CortexState,
}

impl<'probe> M0<'probe> {
    pub(crate) fn new(
        mut memory: Memory<'probe>,
        state: &'probe mut CortexState,
    ) -> Result<Self, Error> {
        if !state.initialized() {
            // determine current state
            let dhcsr = Dhcsr(memory.read_word_32(Dhcsr::ADDRESS)?);

            let core_state = if dhcsr.s_sleep() {
                CoreStatus::Sleeping
            } else if dhcsr.s_halt() {
                log::debug!("Core was halted when connecting");

                let dfsr = Dfsr(memory.read_word_32(Dfsr::ADDRESS)?);

                let reason = dfsr.halt_reason();

                CoreStatus::Halted(reason)
            } else {
                CoreStatus::Running
            };

            // Clear DFSR register. The bits in the register are sticky,
            // so we clear them here to ensure that that none are set.
            let dfsr_clear = Dfsr::clear_all();

            memory.write_word_32(Dfsr::ADDRESS, dfsr_clear.into())?;

            state.current_state = core_state;
            state.initialize();
        }

        Ok(Self { memory, state })
    }

    fn wait_for_core_register_transfer(&mut self) -> Result<()> {
        // now we have to poll the dhcsr register, until the dhcsr.s_regrdy bit is set
        // (see C1-292, cortex m0 arm)
        for _ in 0..100 {
            let dhcsr_val = Dhcsr(self.memory.read_word_32(Dhcsr::ADDRESS)?);

            if dhcsr_val.s_regrdy() {
                return Ok(());
            }
        }
        Err(anyhow!(Error::Probe(DebugProbeError::Timeout)))
    }
}

impl<'probe> CoreInterface for M0<'probe> {
    fn wait_for_core_halted(&mut self, timeout: Duration) -> Result<(), Error> {
        // Wait until halted state is active again.
        let start = Instant::now();

        while start.elapsed() < timeout {
            let dhcsr_val = Dhcsr(self.memory.read_word_32(Dhcsr::ADDRESS)?);

            if dhcsr_val.s_halt() {
                return Ok(());
            }
        }
        Err(Error::Probe(DebugProbeError::Timeout))
    }

    fn core_halted(&mut self) -> Result<bool, Error> {
        // Wait until halted state is active again.
        let dhcsr_val = Dhcsr(self.memory.read_word_32(Dhcsr::ADDRESS)?);

        if dhcsr_val.s_halt() {
            Ok(true)
        } else {
            Ok(false)
        }
    }

    fn read_core_reg(&mut self, addr: CoreRegisterAddress) -> Result<u32, Error> {
        // Write the DCRSR value to select the register we want to read.
        let mut dcrsr_val = Dcrsr(0);
        dcrsr_val.set_regwnr(false); // Perform a read.
        dcrsr_val.set_regsel(addr.into()); // The address of the register to read.

        self.memory
            .write_word_32(Dcrsr::ADDRESS, dcrsr_val.into())?;

        self.wait_for_core_register_transfer()?;

        self.memory.read_word_32(Dcrdr::ADDRESS).map_err(From::from)
    }

    fn write_core_reg(&mut self, addr: CoreRegisterAddress, value: u32) -> Result<()> {
        let result: Result<(), Error> = self
            .memory
            .write_word_32(Dcrdr::ADDRESS, value)
            .map_err(From::from);
        result?;

        // write the DCRSR value to select the register we want to write.
        let mut dcrsr_val = Dcrsr(0);
        dcrsr_val.set_regwnr(true); // Perform a write.
        dcrsr_val.set_regsel(addr.into()); // The address of the register to write.

        self.memory
            .write_word_32(Dcrsr::ADDRESS, dcrsr_val.into())?;

        self.wait_for_core_register_transfer()
    }

    fn halt(&mut self, timeout: Duration) -> Result<CoreInformation, Error> {
        // TODO: Generic halt support

        let mut value = Dhcsr(0);
        value.set_c_halt(true);
        value.set_c_debugen(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;

        self.wait_for_core_halted(timeout)?;

        // try to read the program counter
        let pc_value = self.read_core_reg(PC.address)?;

        // get pc
        Ok(CoreInformation { pc: pc_value })
    }

    fn run(&mut self) -> Result<(), Error> {
        let mut value = Dhcsr(0);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;
        self.memory.flush()
    }

    fn step(&mut self) -> Result<CoreInformation, Error> {
        let mut value = Dhcsr(0);
        // Leave halted state.
        // Step one instruction.
        value.set_c_step(true);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.set_c_maskints(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;

        self.wait_for_core_halted(Duration::from_millis(100))?;

        // try to read the program counter
        let pc_value = self.read_core_reg(PC.address)?;

        // get pc
        Ok(CoreInformation { pc: pc_value })
    }

    fn reset(&mut self) -> Result<(), Error> {
        // Set THE AIRCR.SYSRESETREQ control bit to 1 to request a reset. (ARM V6 ARM, B1.5.16)

        let mut value = Aircr(0);
        value.vectkey();
        value.set_sysresetreq(true);

        self.memory.write_word_32(Aircr::ADDRESS, value.into())?;

        Ok(())
    }

    fn reset_and_halt(&mut self, timeout: Duration) -> Result<CoreInformation, Error> {
        reset_catch_set(self)?;

        self.reset()?;

        self.wait_for_core_halted(timeout)?;

        const XPSR_THUMB: u32 = 1 << 24;
        let xpsr_value = self.read_core_reg(XPSR.address)?;
        if xpsr_value & XPSR_THUMB == 0 {
            self.write_core_reg(XPSR.address, xpsr_value | XPSR_THUMB)?;
        }

        reset_catch_clear(self)?;

        // try to read the program counter
        let pc_value = self.read_core_reg(PC.address)?;

        // get pc
        Ok(CoreInformation { pc: pc_value })
    }

    fn get_available_breakpoint_units(&mut self) -> Result<u32, Error> {
        let result = self.memory.read_word_32(BpCtrl::ADDRESS)?;

        let register = BpCtrl::from(result);

        Ok(register.num_code())
    }

    fn enable_breakpoints(&mut self, state: bool) -> Result<(), Error> {
        debug!("Enabling breakpoints: {:?}", state);
        let mut value = BpCtrl(0);
        value.set_key(true);
        value.set_enable(state);

        self.memory.write_word_32(BpCtrl::ADDRESS, value.into())?;

        self.state.hw_breakpoints_enabled = true;

        Ok(())
    }

    fn set_breakpoint(&mut self, bp_register_index: usize, addr: u32) -> Result<(), Error> {
        debug!("Setting breakpoint on address 0x{:08x}", addr);
        let mut value = BpCompx(0);
        value.set_bp_match(0b11);
        value.set_comp((addr >> 2) & 0x00FF_FFFF);
        value.set_enable(true);

        let register_addr = BpCompx::ADDRESS + (bp_register_index * size_of::<u32>()) as u32;

        self.memory.write_word_32(register_addr, value.into())?;

        Ok(())
    }

    fn registers(&self) -> &'static RegisterFile {
        &ARM_REGISTER_FILE
    }

    fn clear_breakpoint(&mut self, bp_unit_index: usize) -> Result<(), Error> {
        let register_addr = BpCompx::ADDRESS + (bp_unit_index * size_of::<u32>()) as u32;

        let mut value = BpCompx::from(0);
        value.set_enable(false);

        self.memory.write_word_32(register_addr, value.into())?;

        Ok(())
    }

    fn hw_breakpoints_enabled(&self) -> bool {
        self.state.hw_breakpoints_enabled
    }

    fn architecture(&self) -> Architecture {
        Architecture::Arm
    }
    fn status(&mut self) -> Result<crate::core::CoreStatus, Error> {
        let dhcsr = Dhcsr(self.memory.read_word_32(Dhcsr::ADDRESS)?);

        if dhcsr.s_sleep() {
            // Check if we assumed the core to be halted
            if self.state.current_state.is_halted() {
                log::warn!("Expected core to be halted, but core is running");
            }

            self.state.current_state = CoreStatus::Sleeping;

            return Ok(CoreStatus::Sleeping);
        }

        // TODO: Handle lockup

        if dhcsr.s_halt() {
            let dfsr = Dfsr(self.memory.read_word_32(Dfsr::ADDRESS)?);

            let reason = dfsr.halt_reason();

            // Clear bits from Dfsr register
            self.memory
                .write_word_32(Dfsr::ADDRESS, Dfsr::clear_all().into())?;

            // If the core was halted before, we cannot read the halt reason from the chip,
            // because we clear it directly after reading.
            if self.state.current_state.is_halted() {
                // There shouldn't be any bits set, otherwise it means
                // that the reason for the halt has changed. No bits set
                // means that we have an unkown HaltReason.
                if reason == HaltReason::Unknown {
                    return Ok(self.state.current_state);
                }

                log::debug!(
                    "Reason for halt has changed, old reason was {:?}, new reason is {:?}",
                    &self.state.current_state,
                    &reason
                );
            }

            self.state.current_state = CoreStatus::Halted(reason);

            return Ok(CoreStatus::Halted(reason));
        }

        // Core is neither halted nor sleeping, so we assume it is running.
        if self.state.current_state.is_halted() {
            log::warn!("Core is running, but we expected it to be halted");
        }

        self.state.current_state = CoreStatus::Running;

        Ok(CoreStatus::Running)
    }
}

impl<'probe> MemoryInterface for M0<'probe> {
    fn read_word_32(&mut self, address: u32) -> Result<u32, Error> {
        self.memory.read_word_32(address)
    }
    fn read_word_8(&mut self, address: u32) -> Result<u8, Error> {
        self.memory.read_word_8(address)
    }
    fn read_32(&mut self, address: u32, data: &mut [u32]) -> Result<(), Error> {
        self.memory.read_32(address, data)
    }
    fn read_8(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
        self.memory.read_8(address, data)
    }
    fn write_word_32(&mut self, address: u32, data: u32) -> Result<(), Error> {
        self.memory.write_word_32(address, data)
    }
    fn write_word_8(&mut self, address: u32, data: u8) -> Result<(), Error> {
        self.memory.write_word_8(address, data)
    }
    fn write_32(&mut self, address: u32, data: &[u32]) -> Result<(), Error> {
        self.memory.write_32(address, data)
    }
    fn write_8(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
        self.memory.write_8(address, data)
    }
    fn flush(&mut self) -> Result<(), Error> {
        self.memory.flush()
    }
}