1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
use std::{iter, time::Duration};

use crate::{
    architecture::arm::{
        dp::{Abort, Ctrl, RdBuff, DPIDR},
        ArmError, DapError, DpAddress, Pins, PortType, RawDapAccess, Register,
    },
    probe::JTAGAccess,
    DebugProbe, DebugProbeError,
};

use super::{bits_to_byte, JLink};

#[derive(Debug)]
pub struct SwdSettings {
    /// Initial number of idle cycles between consecutive writes.
    ///
    /// When a WAIT response is received, the number of idle cycles
    /// will be increased automatically, so this number can be quite
    /// low.
    num_idle_cycles_between_writes: usize,

    /// How often a SWD transfer is retried when a WAIT response
    /// is received.
    num_retries_after_wait: usize,

    /// When a SWD transfer is retried due to a WAIT response, the idle
    /// cycle amount is doubled every time as a backoff. This sets a maximum
    /// cap to the cycle amount.
    max_retry_idle_cycles_after_wait: usize,

    /// Number of idle cycles inserted before the result
    /// of a write is checked.
    ///
    /// When performing a write operation, the write can
    /// be buffered, meaning that completing the transfer
    /// does not mean that the write was performed succesfully.
    ///
    /// To check that all writes have been executed, the
    /// `RDBUFF` register can be read from the DP.
    ///
    /// If any writes are still pending, this read will result in a WAIT response.
    /// By adding idle cycles before performing this read, the chance of a
    /// WAIT response is smaller.
    idle_cycles_before_write_verify: usize,

    /// Number of idle cycles to insert after a transfer
    ///
    /// It is recommended that at least 8 idle cycles are
    /// inserted.
    idle_cycles_after_transfer: usize,
}

impl Default for SwdSettings {
    fn default() -> Self {
        Self {
            num_idle_cycles_between_writes: 2,
            num_retries_after_wait: 1000,
            max_retry_idle_cycles_after_wait: 128,
            idle_cycles_before_write_verify: 8,
            idle_cycles_after_transfer: 8,
        }
    }
}

#[derive(Default, Debug)]
pub struct ProbeStatistics {
    /// Number of protocol transfers performed.
    ///
    /// This includes repeated transfers, and transfers
    /// which are automatically added to fullfill
    /// protocol requirements, e.g. a read from a
    /// DP register will result in two transfers,
    /// because the read value is returned in the
    /// second transfer
    num_transfers: usize,

    /// Number of extra transfers added to fullfil protocol
    /// requirements. Ideally as low as possible.
    num_extra_transfers: usize,

    /// Number of calls to the probe IO function.
    ///
    /// A single call can perform multiple SWD transfers,
    /// so this number is ideally a lot lower than then
    /// number of SWD transfers.
    num_io_calls: usize,

    /// Number of SWD wait responses encountered.
    num_wait_resp: usize,

    /// Number of SWD FAULT responses encountered.
    num_faults: usize,

    /// Number of line resets executed.
    num_line_resets: usize,
}

impl ProbeStatistics {
    fn record_extra_transfer(&mut self) {
        self.num_extra_transfers += 1;
    }

    fn record_transfers(&mut self, num_transfers: usize) {
        self.num_transfers += num_transfers;
    }

    fn report_io(&mut self) {
        self.num_io_calls += 1;
    }

    fn report_swd_response<T>(&mut self, response: &Result<T, DapError>) {
        match response {
            Err(DapError::FaultResponse) => self.num_faults += 1,
            Err(DapError::WaitResponse) => self.num_wait_resp += 1,
            // Other errors are not counted right now.
            _ => (),
        }
    }

    fn report_line_reset(&mut self) {
        self.num_line_resets += 1;
    }
}

///! Implementation of the SWD and JTAG protocols for the JLink probe.

// Constant to be written to ABORT
const JTAG_ABORT_VALUE: u64 = 0x8;

// IR values for JTAG registers
const JTAG_ABORT_IR_VALUE: u32 = 0x8;
const JTAG_DEBUG_PORT_IR_VALUE: u32 = 0xA;
const JTAG_ACCESS_PORT_IR_VALUE: u32 = 0xB;

const JTAG_STATUS_WAIT: u32 = 0x1;
const JTAG_STATUS_OK: u32 = 0x2;

// ARM DR accesses are always 35 bits wide
const JTAG_DR_BIT_LENGTH: u32 = 35;

// Build a JTAG payload
fn build_jtag_payload_and_address(transfer: &DapTransfer) -> (u64, u32) {
    if transfer.is_abort() {
        (JTAG_ABORT_VALUE, JTAG_ABORT_IR_VALUE)
    } else {
        let address = match transfer.port {
            PortType::DebugPort => JTAG_DEBUG_PORT_IR_VALUE,
            PortType::AccessPort => JTAG_ACCESS_PORT_IR_VALUE,
        };

        let mut payload = 0u64;

        // 32-bit value, bits 35:3
        payload |= (transfer.value as u64) << 3;
        // A[3:2], bits 2:1
        payload |= (transfer.address as u64 & 0b1000) >> 1;
        payload |= (transfer.address as u64 & 0b0100) >> 1;
        // RnW, bit 0
        payload |= u64::from(transfer.direction == TransferDirection::Read);

        (payload, address)
    }
}

fn parse_jtag_response(data: &[u8]) -> u64 {
    let mut received = 0u64;
    for v in data.iter() {
        received >>= 8;
        received |= (*v as u64) << 32;
    }

    received
}

/// Perform a single JTAG tranfer and parse the results
///
/// Return is (value, status)
fn perform_jtag_transfer<P: JTAGAccess + RawProtocolIo>(
    probe: &mut P,
    transfer: &DapTransfer,
) -> Result<(u32, TransferStatus), DebugProbeError> {
    // Determine what JTAG IR address and value to send
    let (payload, address) = build_jtag_payload_and_address(transfer);
    let data = payload.to_le_bytes();

    // This is a bit confusing, but a read from any port is still
    // a JTAG write as we have to transmit the address
    let result = probe.write_register(address, &data[..], JTAG_DR_BIT_LENGTH)?;

    // Clock out any idle time
    let idle_sequence = iter::repeat(false).take(transfer.idle_cycles_after);
    probe.jtag_io(idle_sequence.to_owned(), idle_sequence)?;

    let received = parse_jtag_response(&result);

    if transfer.is_abort() {
        // No responses returned from this
        return Ok((0, TransferStatus::Ok));
    }

    // Received value is bits [35:3]
    let received_value = (received >> 3) as u32;
    // Status is bits [2:0]
    let status = (received & 0b111) as u32;

    let transfer_status = match status {
        JTAG_STATUS_WAIT => {
            // WAIT
            TransferStatus::Failed(DapError::WaitResponse)
        }
        JTAG_STATUS_OK => {
            // OK/FAULT
            TransferStatus::Ok
        }
        _ => {
            tracing::error!("Unexpected DAP response: {}", status);

            TransferStatus::Failed(DapError::NoAcknowledge)
        }
    };

    Ok((received_value, transfer_status))
}

/// Perform a batch of JTAG transfers.
///
/// Each transfer is sent one at a time using the JTAGAccess trait
fn perform_jtag_transfers<P: JTAGAccess + RawProtocolIo>(
    probe: &mut P,
    transfers: &mut [DapTransfer],
) -> Result<(), DebugProbeError> {
    for i in 0..transfers.len() {
        // Send payload
        let (received_value, status) = perform_jtag_transfer(probe, &transfers[i])?;

        // Each response is read in the next transaction
        if i > 0 {
            if transfers[i - 1].is_abort() || transfers[i - 1].is_rdbuff() {
                // No status
                transfers[i - 1].status = TransferStatus::Ok;
            } else {
                transfers[i - 1].status = status;
                if transfers[i - 1].status == TransferStatus::Ok
                    && transfers[i - 1].direction == TransferDirection::Read
                {
                    transfers[i - 1].value = received_value;
                }
            }
        }
    }

    // We need to do a final read to get the status for the last transaction
    let last_transfer = &mut transfers[transfers.len() - 1];
    if last_transfer.is_abort() || last_transfer.is_rdbuff() {
        // No acknowledgement, so need need for another transfer
        last_transfer.status = TransferStatus::Ok;
    } else {
        // Need to issue a fake read to get final ack
        let rdbuff_transfer = DapTransfer::read(PortType::DebugPort, RdBuff::ADDRESS);

        let (received_value, status) = perform_jtag_transfer(probe, &rdbuff_transfer)?;

        last_transfer.status = status;
        if last_transfer.status == TransferStatus::Ok
            && last_transfer.direction == TransferDirection::Read
        {
            last_transfer.value = received_value;
        }
    }

    if !last_transfer.is_abort() {
        // Check CTRL/STATUS to make sure OK/FAULT meant OK
        let (_, _) = perform_jtag_transfer(
            probe,
            &DapTransfer::read(PortType::DebugPort, Ctrl::ADDRESS),
        )?;
        let (received_value, _) = perform_jtag_transfer(
            probe,
            &DapTransfer::read(PortType::DebugPort, RdBuff::ADDRESS),
        )?;

        if Ctrl(received_value).sticky_err() {
            tracing::debug!("JTAG transaction set failed: {:#X?}", transfers);

            // Clear the sticky bit so future transactions succeed
            let (_, _) = perform_jtag_transfer(
                probe,
                &DapTransfer::write(PortType::DebugPort, Ctrl::ADDRESS, received_value),
            )?;

            // Mark OK/FAULT transactions as failed
            // The caller will reset the sticky flag and retry if needed
            for transfer in transfers {
                if transfer.status == TransferStatus::Ok {
                    transfer.status = TransferStatus::Failed(DapError::FaultResponse);
                }
            }
        }
    }

    Ok(())
}

/// Perform a batch of SWD transfers.
///
/// For each transfer, the corresponding bit sequence is
/// created and the resulting sequences are concatened
/// to a single sequence, so that it can be sent to
/// to the probe.
fn perform_swd_transfers<P: RawProtocolIo>(
    probe: &mut P,
    transfers: &mut [DapTransfer],
) -> Result<(), DebugProbeError> {
    let mut io_sequence = IoSequence::new();

    for transfer in transfers.iter() {
        io_sequence.extend(&transfer.io_sequence());
    }

    let result = probe.swd_io(
        io_sequence.direction_bits().to_owned(),
        io_sequence.io_bits().to_owned(),
    )?;

    let mut read_index = 0;

    for (i, transfer) in transfers.iter_mut().enumerate() {
        let response_direction = transfer.direction;
        let additional_idle_cycles_after = transfer.idle_cycles_after;

        let response = parse_swd_response(&result[read_index..], response_direction);

        probe.probe_statistics().report_swd_response(&response);

        tracing::debug!("Transfer result {}: {:x?}", i, response);

        match response {
            Ok(val) => {
                if transfer.direction == TransferDirection::Read {
                    transfer.value = val;
                }

                transfer.status = TransferStatus::Ok;
            }
            Err(e) => {
                transfer.status = TransferStatus::Failed(e.clone());
            }
        }

        read_index += response_length(response_direction);

        read_index += additional_idle_cycles_after;
    }

    Ok(())
}

/// Perform a batch of transfers.
///
/// Certain transfers require additional transfers to
/// get the result. This is handled by this function.
fn perform_transfers<P: DebugProbe + RawProtocolIo + JTAGAccess>(
    probe: &mut P,
    transfers: &mut [DapTransfer],
    idle_cycles: usize,
) -> Result<(), DebugProbeError> {
    assert!(!transfers.is_empty());

    // Read from DebugPort  -> Nothing special needed
    // Read from AccessPort -> Response is returned in next read
    //                         -> The next transfer must be a AP Read, otherwise we need to insert a read from the RDBUFF register
    // Write to any port    -> Status is reported in next transfer
    // Write to any port    -> Writes can be buffered, so certain transfers have to be avoided until a instruction which can be stalled is performed

    let mut final_transfers: Vec<DapTransfer> = Vec::new();

    let mut result_indices = Vec::new();

    let mut num_transfers = 0;

    let mut need_ap_read = false;
    let mut buffered_write = false;
    let mut write_response_pending = false;

    for transfer in transfers.iter() {
        // Check if we need to insert an additional read from the RDBUFF register
        if !transfer.is_ap_read() && need_ap_read {
            final_transfers.push(DapTransfer::read(PortType::DebugPort, RdBuff::ADDRESS));
            num_transfers += 1;

            // This is an extra transfer, which doesn't have a reponse on it's own.
            probe.probe_statistics().record_extra_transfer();
        }

        if buffered_write {
            // Check if we need an additional instruction to avoid loosing buffered writes.

            let abort_write = transfer.port == PortType::DebugPort
                && transfer.address == Abort::ADDRESS
                && transfer.direction == TransferDirection::Write;

            let dpidr_read = transfer.port == PortType::DebugPort
                && transfer.address == DPIDR::ADDRESS
                && transfer.direction == TransferDirection::Read;

            let ctrl_stat_read = transfer.port == PortType::DebugPort
                && transfer.address == Ctrl::ADDRESS
                && transfer.direction == TransferDirection::Read;

            if abort_write || dpidr_read || ctrl_stat_read {
                if let Some(transfer) = final_transfers.last_mut() {
                    transfer.idle_cycles_after +=
                        probe.swd_settings().idle_cycles_before_write_verify
                }

                // Add a read from RDBUFF, this access will stalled by the DebugPort if the write buffer
                // is not empty.
                final_transfers.push(DapTransfer::read(PortType::DebugPort, RdBuff::ADDRESS));

                num_transfers += 1;

                // This is an extra transfer, which doesn't have a reponse on it's own.
                probe.probe_statistics().record_extra_transfer();
            }
        }

        final_transfers.push(transfer.clone());

        // The response for an AP read is returned in the next response
        need_ap_read = transfer.is_ap_read();

        // Writes to the AP can be buffered
        //
        // TODO: Can DP writes be buffered as well?
        buffered_write =
            transfer.port == PortType::AccessPort && transfer.direction == TransferDirection::Write;

        // For all writes, except writes to the DP ABORT register, we need to perform another register to ensure that
        // we know if the write succeeded.
        write_response_pending = transfer.is_write()
            && !(matches!(transfer.port, PortType::DebugPort)
                && transfer.address == Abort::ADDRESS);

        // If the response is returned in the next transfer, we push the correct index
        // SWD only, with JTAG we always get responses in a predictable fashion so it's
        // handled by perform_jtag_transfers
        if probe.active_protocol().unwrap() == crate::WireProtocol::Swd
            && (need_ap_read || write_response_pending)
        {
            result_indices.push(num_transfers + 1);
        } else {
            result_indices.push(num_transfers);
        }

        if transfer.is_write() {
            tracing::trace!("Adding {} idle cycles after transfer!", idle_cycles);

            final_transfers.last_mut().unwrap().idle_cycles_after = idle_cycles;
        }

        num_transfers += 1;
    }

    if need_ap_read || write_response_pending {
        if write_response_pending {
            if let Some(transfer) = final_transfers.last_mut() {
                transfer.idle_cycles_after += probe.swd_settings().idle_cycles_before_write_verify;
            }
        }

        final_transfers.push(DapTransfer::read(PortType::DebugPort, RdBuff::ADDRESS));

        num_transfers += 1;
        probe.probe_statistics().record_extra_transfer();
    }

    // Add idle cycles at the end, to ensure transfer is performed
    if probe.swd_settings().idle_cycles_after_transfer > 0 {
        final_transfers.last_mut().unwrap().idle_cycles_after +=
            probe.swd_settings().idle_cycles_after_transfer;
    }

    tracing::debug!(
        "Performing {} transfers ({} additional transfers)",
        num_transfers,
        num_transfers - transfers.len()
    );

    probe.probe_statistics().record_transfers(num_transfers);

    match probe.active_protocol().unwrap() {
        crate::WireProtocol::Swd => {
            perform_swd_transfers(probe, &mut final_transfers[..])?;
        }
        crate::WireProtocol::Jtag => {
            perform_jtag_transfers(probe, &mut final_transfers[..])?;
        }
    }

    // Retrieve the results
    for (transfer, index) in transfers.iter_mut().zip(result_indices) {
        transfer.status = final_transfers[index].status.clone();
        if transfer.direction == TransferDirection::Read {
            transfer.value = final_transfers[index].value;
        }
    }

    Ok(())
}

#[derive(Debug, Clone)]
struct DapTransfer {
    port: PortType,
    direction: TransferDirection,
    address: u8,
    value: u32,
    status: TransferStatus,
    idle_cycles_after: usize,
}

impl DapTransfer {
    fn read(port: PortType, address: u8) -> DapTransfer {
        Self {
            port,
            address,
            direction: TransferDirection::Read,
            value: 0,
            status: TransferStatus::Pending,
            idle_cycles_after: 0,
        }
    }

    fn write(port: PortType, address: u8, value: u32) -> DapTransfer {
        Self {
            port,
            address,
            value,
            direction: TransferDirection::Write,
            status: TransferStatus::Pending,
            idle_cycles_after: 0,
        }
    }

    fn transfer_type(&self) -> TransferType {
        match self.direction {
            TransferDirection::Read => TransferType::Read,
            TransferDirection::Write => TransferType::Write(self.value),
        }
    }

    fn io_sequence(&self) -> IoSequence {
        let mut seq = build_swd_transfer(self.port, self.transfer_type(), self.address);
        if self.idle_cycles_after > 0 {
            seq.add_output_sequence(&vec![false; self.idle_cycles_after]);
        }

        seq
    }

    // Helper functions for combining transfers

    fn is_ap_read(&self) -> bool {
        self.port == PortType::AccessPort && self.direction == TransferDirection::Read
    }

    fn is_write(&self) -> bool {
        self.direction == TransferDirection::Write
    }

    fn is_abort(&self) -> bool {
        self.port == PortType::DebugPort
            && self.address == Abort::ADDRESS
            && self.direction == TransferDirection::Write
    }

    fn is_rdbuff(&self) -> bool {
        self.port == PortType::DebugPort
            && self.address == RdBuff::ADDRESS
            && self.direction == TransferDirection::Read
    }
}

#[derive(Debug, PartialEq, Copy, Clone)]
enum TransferDirection {
    Read,
    Write,
}

#[derive(Debug, Clone, PartialEq)]
enum TransferStatus {
    Pending,
    Ok,
    Failed(DapError),
}

struct IoSequence {
    io: Vec<bool>,
    direction: Vec<bool>,
}

impl IoSequence {
    const INPUT: bool = false;
    const OUTPUT: bool = true;

    fn new() -> Self {
        IoSequence {
            io: vec![],
            direction: vec![],
        }
    }

    fn add_output(&mut self, bit: bool) {
        self.io.push(bit);
        self.direction.push(Self::OUTPUT);
    }

    fn add_output_sequence(&mut self, bits: &[bool]) {
        self.io.extend_from_slice(bits);
        self.direction
            .extend(iter::repeat(Self::OUTPUT).take(bits.len()));
    }

    fn add_input(&mut self) {
        // Input bit, the
        self.io.push(false);
        self.direction.push(Self::INPUT);
    }

    fn add_input_sequence(&mut self, length: usize) {
        // Input bit, the
        self.io.extend(iter::repeat(false).take(length));
        self.direction
            .extend(iter::repeat(Self::INPUT).take(length));
    }

    fn io_bits(&self) -> &[bool] {
        &self.io
    }

    fn direction_bits(&self) -> &[bool] {
        &self.direction
    }

    fn extend(&mut self, other: &IoSequence) {
        self.io.extend_from_slice(other.io_bits());
        self.direction.extend_from_slice(other.direction_bits());
    }
}

#[derive(Debug, PartialEq, Clone, Copy)]
enum TransferType {
    Read,
    Write(u32),
}

fn build_swd_transfer(port: PortType, direction: TransferType, address: u8) -> IoSequence {
    // JLink operates on raw SWD bit sequences.
    // So we need to manually assemble the read and write bitsequences.
    // The following code with the comments hopefully explains well enough how it works.
    // `true` means `1` and `false` means `0` for the SWDIO sequence.
    // `true` means `drive line` and `false` means `open drain` for the direction sequence.

    // First we determine the APnDP bit.
    let port = match port {
        PortType::DebugPort => false,
        PortType::AccessPort => true,
    };

    // Set direction bit to 1 for reads.
    let direction_bit = direction == TransferType::Read;

    // Then we determine the address bits.
    // Only bits 2 and 3 are relevant as we use byte addressing but can only read 32bits
    // which means we can skip bits 0 and 1. The ADI specification is defined like this.
    let a2 = (address >> 2) & 0x01 == 1;
    let a3 = (address >> 3) & 0x01 == 1;

    let mut sequence = IoSequence::new();

    // First we make sure we have the SDWIO line on idle for at least 2 clock cylces.
    sequence.add_output(false);
    sequence.add_output(false);

    // Then we assemble the actual request.

    // Start bit (always 1).
    sequence.add_output(true);

    // APnDP (0 for DP, 1 for AP).
    sequence.add_output(port);

    // RnW (0 for Write, 1 for Read).
    sequence.add_output(direction_bit);

    // Address bits
    sequence.add_output(a2);
    sequence.add_output(a3);

    // Odd parity bit over APnDP, RnW a2 and a3
    sequence.add_output(port ^ direction_bit ^ a2 ^ a3);

    // Stop bit (always 0).
    sequence.add_output(false);

    // Park bit (always 1).
    sequence.add_output(true);

    // Turnaround bit.
    sequence.add_input();

    // ACK bits.
    sequence.add_input_sequence(3);

    if let TransferType::Write(mut value) = direction {
        // For writes, we need to add two turnaround bits.
        // Theoretically the spec says that there is only one turnaround bit required here, where no clock is driven.
        // This seems to not be the case in actual implementations. So we insert two turnaround bits here!
        sequence.add_input();

        // Now we add all the data bits to the sequence and in the same loop we also calculate the parity bit.
        let mut parity = false;
        for _ in 0..32 {
            let bit = value & 1 == 1;
            sequence.add_output(bit);
            parity ^= bit;
            value >>= 1;
        }

        sequence.add_output(parity);
    } else {
        // Handle Read
        // Add the data bits to the SWDIO sequence.
        sequence.add_input_sequence(32);

        // Add the parity bit to the sequence.
        sequence.add_input();

        // Finally add the turnaround bit to the sequence.
        sequence.add_input();
    }

    sequence
}

fn response_length(direction: TransferDirection) -> usize {
    match direction {
        TransferDirection::Read => 2 + 8 + 3 + 32 + 1 + 2,
        TransferDirection::Write => 2 + 8 + 3 + 2 + 32 + 1,
    }
}

fn parse_swd_response(response: &[bool], direction: TransferDirection) -> Result<u32, DapError> {
    // We need to discard the output bits that correspond to the part of the request
    // in which the probe is driving SWDIO. Additionally, there is a phase shift that
    // happens when ownership of the SWDIO line is transfered to the device.
    // The device changes the value of SWDIO with the rising edge of the clock.
    //
    // It appears that the JLink probe samples this line with the falling edge of
    // the clock. Therefore, the whole sequence seems to be leading by one bit,
    // which is why we don't discard the turnaround bit. It actually contains the
    // first ack bit.

    // There are two idle bits and eight request bits,
    // the acknowledge comes directly after.
    let ack_offset = 2 + 8;

    // Get the ack.
    let ack = &response[ack_offset..ack_offset + 3];

    let read_value_offset = ack_offset + 3;

    let register_val: Vec<bool> = response[read_value_offset..read_value_offset + 32].to_owned();

    let parity_bit = response[read_value_offset + 32];

    // When all bits are high, this means we didn't get any response from the
    // target, which indicates a protocol error.
    if ack[0] && ack[1] && ack[2] {
        return Err(DapError::NoAcknowledge);
    }
    if ack[1] {
        return Err(DapError::WaitResponse);
    }
    if ack[2] {
        return Err(DapError::FaultResponse);
    }

    if ack[0] {
        // Extract value, if it is a read

        if let TransferDirection::Read = direction {
            // Take the data bits and convert them into a 32bit int.
            let value = bits_to_byte(register_val);

            // Make sure the parity is correct.
            if (value.count_ones() % 2 == 1) == parity_bit {
                tracing::trace!("DAP read {}.", value);
                Ok(value)
            } else {
                Err(DapError::IncorrectParity)
            }
        } else {
            // Write, don't parse response
            Ok(0)
        }
    } else {
        // Invalid response
        tracing::debug!(
            "Unexpected response from target, does not conform to SWD specfication (ack={:?})",
            ack
        );
        Err(DapError::SwdProtocol)
    }
}

pub trait RawProtocolIo {
    fn jtag_io<M, I>(&mut self, tms: M, tdi: I) -> Result<Vec<bool>, DebugProbeError>
    where
        M: IntoIterator<Item = bool>,
        I: IntoIterator<Item = bool>;

    fn swd_io<D, S>(&mut self, dir: D, swdio: S) -> Result<Vec<bool>, DebugProbeError>
    where
        D: IntoIterator<Item = bool>,
        S: IntoIterator<Item = bool>;

    fn swd_settings(&self) -> &SwdSettings;

    fn probe_statistics(&mut self) -> &mut ProbeStatistics;

    /// Try to perform a SWD line reset, followed by a read of the DPIDR register.
    ///
    /// Returns Ok if the read of the DPIDR register was succesful, and Err
    /// otherwise. In case of JLink Errors, the actual error is returned.
    ///
    /// If the first line reset fails, it is tried once again, as the target
    /// might be in the middle of a transfer the first time we try the reset.
    ///
    /// See section B4.3.3 in the ADIv5 Specification.
    fn line_reset(&mut self) -> Result<(), ArmError>;
}

impl RawProtocolIo for JLink {
    fn jtag_io<M, I>(&mut self, tms: M, tdi: I) -> Result<Vec<bool>, DebugProbeError>
    where
        M: IntoIterator<Item = bool>,
        I: IntoIterator<Item = bool>,
    {
        if self.protocol.unwrap() == crate::WireProtocol::Swd {
            panic!("Logic error, requested jtag_io when in SWD mode");
        }

        self.probe_statistics.report_io();

        let iter = self.handle.jtag_io(tms, tdi)?;

        Ok(iter.collect())
    }

    fn swd_io<D, S>(&mut self, dir: D, swdio: S) -> Result<Vec<bool>, DebugProbeError>
    where
        D: IntoIterator<Item = bool>,
        S: IntoIterator<Item = bool>,
    {
        if self.protocol.unwrap() == crate::WireProtocol::Jtag {
            panic!("Logic error, requested swd_io when in JTAG mode");
        }

        self.probe_statistics.report_io();

        let iter = self.handle.swd_io(dir, swdio)?;

        Ok(iter.collect())
    }

    fn line_reset(&mut self) -> Result<(), ArmError> {
        tracing::debug!("Performing line reset!");

        const NUM_RESET_BITS: u8 = 50;

        let idle_cycles = std::cmp::max(1, self.swd_settings().num_idle_cycles_between_writes);

        let mut result = Ok(());

        for _ in 0..2 {
            self.probe_statistics().report_line_reset();

            self.swj_sequence(NUM_RESET_BITS, 0x7FFFFFFFFFFFF)?;

            // Read DPIDR register
            //
            // The `raw_read_register` function cannot be called here, because that function can call `line_reset` again,
            // resulting in an endless loop.
            let mut transfers = [DapTransfer::read(PortType::DebugPort, 0)];

            perform_transfers(self, &mut transfers, idle_cycles)?;

            match &transfers[0].status {
                TransferStatus::Ok => return Ok(()),
                TransferStatus::Pending => {
                    tracing::debug!("Unexpected pending status in line reset.");
                    // Transfer will be retried.
                }
                TransferStatus::Failed(e) => {
                    tracing::debug!("Error reading DPIDR register after line reset: {e:?}");
                    result = Err(ArmError::from(e.clone()));
                }
            }
        }

        // No acknowledge from the target, even if after line reset
        result
    }

    fn swd_settings(&self) -> &SwdSettings {
        &self.swd_settings
    }

    fn probe_statistics(&mut self) -> &mut ProbeStatistics {
        &mut self.probe_statistics
    }
}

impl<Probe: DebugProbe + RawProtocolIo + JTAGAccess + 'static> RawDapAccess for Probe {
    fn select_dp(&mut self, dp: DpAddress) -> Result<(), ArmError> {
        match dp {
            DpAddress::Default => Ok(()), // nop
            DpAddress::Multidrop(_) => Err(DebugProbeError::ProbeSpecific(
                anyhow::anyhow!("JLink doesn't support multidrop SWD yet").into(),
            )
            .into()),
        }
    }

    fn raw_read_register(&mut self, port: PortType, address: u8) -> Result<u32, ArmError> {
        let dap_wait_retries = self.swd_settings().num_retries_after_wait;
        let mut idle_cycles = std::cmp::max(1, self.swd_settings().num_idle_cycles_between_writes);

        // Now we try to issue the request until it fails or succeeds.
        // If we timeout we retry a maximum of 5 times.
        for retry in 0..dap_wait_retries {
            let mut transfers = [DapTransfer::read(port, address)];

            perform_transfers(self, &mut transfers, idle_cycles)?;

            match transfers[0].status {
                TransferStatus::Ok => {
                    return Ok(transfers[0].value);
                }
                TransferStatus::Pending => {
                    panic!("Unexpected transfer state after reading register. This is a bug!");
                }
                TransferStatus::Failed(DapError::WaitResponse) => {
                    // If ack[1] is set the host must retry the request. So let's do that right away!
                    tracing::debug!(
                        "DAP WAIT, (read), retries remaining {}.",
                        dap_wait_retries - retry
                    );

                    // Because we use overrun detection, we now have to clear the overrun error
                    let mut abort = Abort(0);

                    abort.set_orunerrclr(true);

                    RawDapAccess::raw_write_register(
                        self,
                        PortType::DebugPort,
                        Abort::ADDRESS,
                        abort.into(),
                    )?;

                    tracing::debug!("Cleared sticky overrun bit");

                    idle_cycles = std::cmp::min(
                        self.swd_settings().max_retry_idle_cycles_after_wait,
                        idle_cycles * 2,
                    );

                    continue;
                }
                TransferStatus::Failed(DapError::FaultResponse) => {
                    tracing::debug!("DAP FAULT");

                    // A fault happened during operation.

                    // To get a clue about the actual fault we want to read the ctrl register,
                    // which will have the fault status flags set. But we only do this
                    // if we are *not* currently reading the ctrl register, otherwise
                    // this could end up being an endless recursion.

                    if address != Ctrl::ADDRESS {
                        let response = RawDapAccess::raw_read_register(
                            self,
                            PortType::DebugPort,
                            Ctrl::ADDRESS,
                        )?;
                        let ctrl = Ctrl::try_from(response)?;
                        tracing::debug!(
                            "Reading DAP register failed. Ctrl/Stat register value is: {:#?}",
                            ctrl
                        );

                        // Check the reason for the fault
                        // Other fault reasons than overrun or write error are not handled yet.
                        if ctrl.sticky_orun() || ctrl.sticky_err() {
                            // We did not handle a WAIT state properly

                            // Because we use overrun detection, we now have to clear the overrun error
                            let mut abort = Abort(0);

                            // Clear sticky error flags
                            abort.set_orunerrclr(ctrl.sticky_orun());
                            abort.set_stkerrclr(ctrl.sticky_err());

                            RawDapAccess::raw_write_register(
                                self,
                                PortType::DebugPort,
                                Abort::ADDRESS,
                                abort.into(),
                            )?;
                        }
                    } else {
                        tracing::warn!(
                            "Error reading CTRL/STAT register. This should not happen..."
                        );
                    }

                    return Err(DapError::FaultResponse.into());
                }
                // The other errors mean that something went wrong with the protocol itself,
                // so we try to perform a line reset, and recover.
                TransferStatus::Failed(_) => {
                    tracing::debug!("DAP NACK");

                    // Because we clock the SWDCLK line after receving the WAIT response,
                    // the target might be in weird state. If we perform a line reset,
                    // we should be able to recover from this.
                    self.line_reset()?;

                    // Retry operation again
                    continue;
                }
            }
        }

        // If we land here, the DAP operation timed out.
        tracing::error!("DAP read timeout.");
        Err(ArmError::Timeout)
    }

    fn raw_read_block(
        &mut self,
        port: PortType,
        address: u8,
        values: &mut [u32],
    ) -> Result<(), ArmError> {
        let mut succesful_transfers = 0;

        let mut idle_cycles = std::cmp::max(1, self.swd_settings().num_idle_cycles_between_writes);

        'transfer: for _ in 0..self.swd_settings().num_retries_after_wait {
            if succesful_transfers == values.len() {
                break;
            }

            let mut transfers =
                vec![DapTransfer::read(port, address); values.len() - succesful_transfers];

            perform_transfers(self, &mut transfers, idle_cycles)?;

            let index_offset = succesful_transfers;

            for (index, result) in transfers.iter().enumerate() {
                match &result.status {
                    TransferStatus::Ok => {
                        values[index_offset + index] = result.value;
                        succesful_transfers += 1;
                    }
                    TransferStatus::Failed(err) => {
                        tracing::debug!(
                            "Error in access {}/{} of block access: {}",
                            index + 1,
                            values.len(),
                            err
                        );

                        if err == &DapError::WaitResponse {
                            // Clear STICKORRUN flag.

                            // Because we use overrun detection, we now have to clear the overrun error.
                            let mut abort = Abort(0);

                            abort.set_orunerrclr(true);

                            RawDapAccess::raw_write_register(
                                self,
                                PortType::DebugPort,
                                Abort::ADDRESS,
                                abort.into(),
                            )?;

                            idle_cycles = std::cmp::min(
                                self.swd_settings().max_retry_idle_cycles_after_wait,
                                idle_cycles * 2,
                            );

                            tracing::debug!("Retrying access {}", index_offset + index + 1);

                            continue 'transfer;
                        }
                        return Err(err.clone().into());
                    }
                    TransferStatus::Pending => {
                        // This should not happen...
                        panic!("Error performing transfers. This is a bug, please report it.")
                    }
                }
            }
        }

        Ok(())
    }

    fn raw_write_register(
        &mut self,
        port: PortType,
        address: u8,
        value: u32,
    ) -> Result<(), ArmError> {
        let dap_wait_retries = self.swd_settings().num_retries_after_wait;
        let mut idle_cycles = std::cmp::max(1, self.swd_settings().num_idle_cycles_between_writes);

        // Now we try to issue the request until it fails or succeeds.
        // If we timeout we retry a maximum of 5 times.
        for retry in 0..dap_wait_retries {
            let mut transfers = [DapTransfer::write(port, address, value)];

            perform_transfers(self, &mut transfers, idle_cycles)?;

            match transfers[0].status {
                TransferStatus::Ok => {
                    return Ok(());
                }
                TransferStatus::Pending => {
                    panic!("Unexpected transfer state after writing register. This is a bug!");
                }
                TransferStatus::Failed(DapError::WaitResponse) => {
                    // If ack[1] is set the host must retry the request. So let's do that right away!
                    tracing::debug!(
                        "DAP WAIT, (write), retries remaining {}.",
                        dap_wait_retries - retry
                    );

                    let mut abort = Abort(0);

                    abort.set_orunerrclr(true);

                    // Because we use overrun detection, we now have to clear the overrun error
                    RawDapAccess::raw_write_register(
                        self,
                        PortType::DebugPort,
                        Abort::ADDRESS,
                        abort.into(),
                    )?;

                    tracing::debug!("Cleared sticky overrun bit");

                    idle_cycles = std::cmp::min(
                        self.swd_settings().max_retry_idle_cycles_after_wait,
                        idle_cycles * 2,
                    );

                    continue;
                }
                TransferStatus::Failed(DapError::FaultResponse) => {
                    tracing::debug!("DAP FAULT");
                    // A fault happened during operation.

                    // To get a clue about the actual fault we read the ctrl register,
                    // which will have the fault status flags set.

                    let response =
                        RawDapAccess::raw_read_register(self, PortType::DebugPort, Ctrl::ADDRESS)?;

                    let ctrl = Ctrl::try_from(response)?;
                    tracing::trace!(
                        "Writing DAP register failed. Ctrl/Stat register value is: {:#?}",
                        ctrl
                    );

                    // Check the reason for the fault
                    // Other fault reasons than overrun or write error are not handled yet.
                    if ctrl.sticky_orun() || ctrl.sticky_err() {
                        // We did not handle a WAIT state properly

                        // Because we use overrun detection, we now have to clear the overrun error
                        let mut abort = Abort(0);

                        // Clear sticky error flags
                        abort.set_orunerrclr(ctrl.sticky_orun());
                        abort.set_stkerrclr(ctrl.sticky_err());

                        RawDapAccess::raw_write_register(
                            self,
                            PortType::DebugPort,
                            Abort::ADDRESS,
                            abort.into(),
                        )?;
                    }

                    return Err(DapError::FaultResponse.into());
                }
                // The other errors mean that something went wrong with the protocol itself,
                // so we try to perform a line reset, and recover.
                TransferStatus::Failed(_) => {
                    tracing::debug!("DAP NACK");

                    // Because we clock the SWDCLK line after receving the WAIT response,
                    // the target might be in weird state. If we perform a line reset,
                    // we should be able to recover from this.
                    self.line_reset()?;

                    // Retry operation
                    continue;
                }
            }
        }

        // If we land here, the DAP operation timed out.
        tracing::error!("DAP write timeout.");
        Err(ArmError::Timeout)
    }

    fn raw_write_block(
        &mut self,
        port: PortType,
        address: u8,
        values: &[u32],
    ) -> Result<(), ArmError> {
        let mut succesful_transfers = 0;

        let mut idle_cycles = std::cmp::max(1, self.swd_settings().num_idle_cycles_between_writes);

        'transfer: for _ in 0..self.swd_settings().num_retries_after_wait {
            if succesful_transfers == values.len() {
                break;
            }

            let mut transfers: Vec<DapTransfer> = values
                .iter()
                .skip(succesful_transfers)
                .map(|v| DapTransfer::write(port, address, *v))
                .collect();

            let index_offset = succesful_transfers;

            perform_transfers(self, &mut transfers, idle_cycles)?;

            for (index, result) in transfers.iter().enumerate() {
                match &result.status {
                    TransferStatus::Ok => {
                        succesful_transfers += 1;
                    }
                    TransferStatus::Failed(err) => {
                        tracing::debug!(
                            "Error in access {}/{} of block access: {}",
                            index_offset + index + 1,
                            values.len(),
                            err
                        );

                        if err == &DapError::WaitResponse {
                            // Clear STICKORRUN flag.

                            // Because we use overrun detection, we now have to clear the overrun error.
                            let mut abort = Abort(0);

                            abort.set_orunerrclr(true);

                            RawDapAccess::raw_write_register(
                                self,
                                PortType::DebugPort,
                                Abort::ADDRESS,
                                abort.into(),
                            )?;

                            idle_cycles = std::cmp::min(
                                self.swd_settings().max_retry_idle_cycles_after_wait,
                                idle_cycles * 2,
                            );

                            tracing::debug!("Retrying access {}", index_offset + index + 1);

                            continue 'transfer;
                        }

                        return Err(err.clone().into());
                    }
                    TransferStatus::Pending => {
                        // This should not happen...
                        panic!("Error performing transfers. This is a bug, please report it.")
                    }
                }
            }

            return Ok(());
        }

        Ok(())
    }

    fn swj_pins(
        &mut self,
        pin_out: u32,
        pin_select: u32,
        pin_wait: u32,
    ) -> Result<u32, DebugProbeError> {
        let mut nreset = Pins(0);
        nreset.set_nreset(true);
        let nreset_mask = nreset.0 as u32;

        // If only the reset pin is selected we perform the reset.
        // If something else is selected return an error as this is not supported on J-Links.
        if pin_select == nreset_mask {
            if Pins(pin_out as u8).nreset() {
                self.target_reset_deassert()?;
            } else {
                self.target_reset_assert()?;
            }

            // Normally this would be the timeout we pass to the probe to settle the pins.
            // The J-Link is not capable of this, so we just wait for this time on the host
            // and assume it has settled until then.
            std::thread::sleep(Duration::from_micros(pin_wait as u64));

            // We signal that we cannot read the pin state.
            Ok(0xFFFF_FFFF)
        } else {
            // This is not supported for J-Links, unfortunately.
            Err(DebugProbeError::CommandNotSupportedByProbe("swj_pins"))
        }
    }

    fn into_probe(self: Box<Self>) -> Box<dyn DebugProbe> {
        self
    }

    fn swj_sequence(&mut self, bit_len: u8, mut bits: u64) -> Result<(), DebugProbeError> {
        let protocol = self.active_protocol().expect("No protocol set");

        let mut io_sequence = IoSequence::new();

        for _ in 0..bit_len {
            io_sequence.add_output(bits & 1 == 1);

            bits >>= 1;
        }

        // ARM / SWJ uses 4 bit IR length
        self.set_ir_len(4);

        match protocol {
            crate::WireProtocol::Jtag => {
                self.jtag_io(
                    io_sequence.io_bits().to_owned(),
                    iter::repeat(false).take(bit_len.into()),
                )?;
            }
            crate::WireProtocol::Swd => {
                self.swd_io(
                    io_sequence.direction_bits().to_owned(),
                    io_sequence.io_bits().to_owned(),
                )?;
            }
        }

        Ok(())
    }
}

#[cfg(test)]
mod test {

    use std::iter;

    use crate::{
        architecture::arm::{ArmError, PortType, RawDapAccess},
        probe::JTAGAccess,
        DebugProbe, DebugProbeError,
    };

    use super::{
        parse_jtag_response, ProbeStatistics, RawProtocolIo, SwdSettings, JTAG_ABORT_IR_VALUE,
        JTAG_ACCESS_PORT_IR_VALUE, JTAG_DEBUG_PORT_IR_VALUE, JTAG_DR_BIT_LENGTH, JTAG_STATUS_OK,
        JTAG_STATUS_WAIT,
    };

    use bitvec::prelude::*;

    #[allow(dead_code)]
    enum DapAcknowledge {
        Ok,
        Wait,
        Fault,
        NoAck,
    }

    #[derive(Debug)]
    struct ExpectedJtagTransaction {
        ir_address: u32,
        address: u32,
        value: u32,
        read: bool,
        result: u64,
    }

    #[derive(Debug)]
    struct MockJaylink {
        direction_input: Option<Vec<bool>>,
        io_input: Option<Vec<bool>>,
        transfer_responses: Vec<Vec<bool>>,
        jtag_transactions: Vec<ExpectedJtagTransaction>,

        expected_transfer_count: usize,
        performed_transfer_count: usize,

        swd_settings: SwdSettings,
        probe_statistics: ProbeStatistics,

        protocol: crate::WireProtocol,
    }

    impl MockJaylink {
        fn new() -> Self {
            Self {
                direction_input: None,
                io_input: None,
                transfer_responses: vec![vec![]],
                jtag_transactions: vec![],

                expected_transfer_count: 1,
                performed_transfer_count: 0,

                swd_settings: SwdSettings::default(),
                probe_statistics: ProbeStatistics::default(),

                protocol: crate::WireProtocol::Swd,
            }
        }

        fn add_write_response(&mut self, acknowledge: DapAcknowledge, idle_cycles: usize) {
            let last_transfer = self.transfer_responses.last_mut().unwrap();

            // The write consists of the following parts:
            //
            // - 2 idle bits
            // - 8 request bits
            // - 1 turnaround bit
            // - 3 acknowledge bits
            // - 2 turnaround bits
            // - x idle cycles
            let write_length = 2 + 8 + 1 + 3 + 2 + 32 + idle_cycles;

            let mut response = BitVec::<usize, Lsb0>::repeat(false, write_length);

            match acknowledge {
                DapAcknowledge::Ok => {
                    // Set acknowledege to OK
                    response.set(10, true);
                }
                DapAcknowledge::Wait => {
                    // Set acknowledege to WAIT
                    response.set(11, true);
                }
                DapAcknowledge::Fault => {
                    // Set acknowledege to FAULT
                    response.set(12, true);
                }
                DapAcknowledge::NoAck => {
                    // No acknowledge means that all acknowledge bits
                    // are set to false.
                }
            }

            last_transfer.extend(response);
        }

        fn add_jtag_abort(&mut self) {
            let expected = ExpectedJtagTransaction {
                ir_address: JTAG_ABORT_IR_VALUE,
                address: 0,
                value: 0,
                read: false,
                result: 0,
            };

            self.jtag_transactions.push(expected);
            self.expected_transfer_count += 1;
        }

        fn add_jtag_response(
            &mut self,
            port: PortType,
            address: u32,
            read: bool,
            acknowlege: DapAcknowledge,
            output_value: u32,
            input_value: u32,
        ) {
            let mut response = (output_value as u64) << 3;

            let status = match acknowlege {
                DapAcknowledge::Ok => JTAG_STATUS_OK,
                DapAcknowledge::Wait => JTAG_STATUS_WAIT,
                _ => 0b111,
            };

            response |= status as u64;

            let expected = ExpectedJtagTransaction {
                ir_address: if port == PortType::DebugPort {
                    JTAG_DEBUG_PORT_IR_VALUE
                } else {
                    JTAG_ACCESS_PORT_IR_VALUE
                },
                address,
                value: input_value,
                read,
                result: response,
            };

            self.jtag_transactions.push(expected);
            self.expected_transfer_count += 1;
        }

        fn add_read_response(&mut self, acknowledge: DapAcknowledge, value: u32) {
            let last_transfer = self.transfer_responses.last_mut().unwrap();

            // The read consists of the following parts:
            //
            // - 2 idle bits
            // - 8 request bits
            // - 1 turnaround bit
            // - 3 acknowledge bits
            // - 2 turnaround bits
            let write_length = 2 + 8 + 1 + 3 + 32 + 2;

            let mut response = BitVec::<usize, Lsb0>::repeat(false, write_length);

            match acknowledge {
                DapAcknowledge::Ok => {
                    // Set acknowledege to OK
                    response.set(10, true);
                }
                DapAcknowledge::Wait => {
                    // Set acknowledege to WAIT
                    response.set(11, true);
                }
                DapAcknowledge::Fault => {
                    // Set acknowledege to FAULT
                    response.set(12, true);
                }
                DapAcknowledge::NoAck => {
                    // No acknowledge means that all acknowledge bits
                    // are set to false.
                }
            }

            // Set the read value
            response.get_mut(13..13 + 32).unwrap().store_le(value);

            // calculate the parity bit
            let parity_bit = value.count_ones() % 2 == 1;
            response.set(13 + 32, parity_bit);

            last_transfer.extend(response);
        }

        fn add_idle_cycles(&mut self, len: usize) {
            let last_transfer = self.transfer_responses.last_mut().unwrap();

            last_transfer.extend(iter::repeat(false).take(len))
        }

        fn add_transfer(&mut self) {
            self.transfer_responses.push(Vec::new());
            self.expected_transfer_count += 1;
        }
    }

    impl JTAGAccess for MockJaylink {
        fn set_ir_len(&mut self, _len: u32) {
            todo!()
        }

        fn read_register(&mut self, _address: u32, _len: u32) -> Result<Vec<u8>, DebugProbeError> {
            todo!()
        }

        fn set_idle_cycles(&mut self, _idle_cycles: u8) {
            todo!()
        }

        fn get_idle_cycles(&self) -> u8 {
            todo!()
        }

        fn write_register(
            &mut self,
            address: u32,
            data: &[u8],
            len: u32,
        ) -> Result<Vec<u8>, DebugProbeError> {
            let jtag_value = parse_jtag_response(&data[..5]);

            // Always 35 bit transfers
            assert_eq!(len, JTAG_DR_BIT_LENGTH);

            let jtag_transaction = self.jtag_transactions.remove(0);

            assert_eq!(
                jtag_transaction.ir_address,
                address,
                "Address mismatch with {} remaining transactions",
                self.jtag_transactions.len()
            );

            if jtag_transaction.ir_address != JTAG_ABORT_IR_VALUE {
                let value = (jtag_value >> 3) as u32;
                let rnw = jtag_value & 1 == 1;
                let dap_address = ((jtag_value & 0x6) << 1) as u32;

                assert_eq!(dap_address, jtag_transaction.address);
                assert_eq!(rnw, jtag_transaction.read);
                assert_eq!(value, jtag_transaction.value);
            }

            self.performed_transfer_count += 1;

            let ret = jtag_transaction.result;

            Ok(ret.to_le_bytes()[..5].to_vec())
        }
    }

    impl RawProtocolIo for MockJaylink {
        fn jtag_io<M, I>(&mut self, _tms: M, _tdi: I) -> Result<Vec<bool>, crate::DebugProbeError>
        where
            M: IntoIterator<Item = bool>,
            I: IntoIterator<Item = bool>,
        {
            Ok(Vec::new())
        }

        fn swd_io<D, S>(&mut self, dir: D, swdio: S) -> Result<Vec<bool>, crate::DebugProbeError>
        where
            D: IntoIterator<Item = bool>,
            S: IntoIterator<Item = bool>,
        {
            self.direction_input = Some(dir.into_iter().collect());
            self.io_input = Some(swdio.into_iter().collect());

            assert_eq!(
                self.direction_input.as_ref().unwrap().len(),
                self.io_input.as_ref().unwrap().len()
            );

            let transfer_response = self.transfer_responses.remove(0);

            assert_eq!(
                transfer_response.len(),
                self.io_input.as_ref().map(|v| v.len()).unwrap(),
                "Length mismatch for transfer {}/{}",
                self.performed_transfer_count + 1,
                self.expected_transfer_count
            );

            self.performed_transfer_count += 1;

            Ok(transfer_response)
        }

        fn line_reset(&mut self) -> Result<(), ArmError> {
            Ok(())
        }

        fn swd_settings(&self) -> &SwdSettings {
            &self.swd_settings
        }

        fn probe_statistics(&mut self) -> &mut ProbeStatistics {
            &mut self.probe_statistics
        }
    }

    /// This is just a blanket impl that will crash if used (only relevant in tests,
    /// so no problem as we do not use it) to fulfill the marker requirement.
    impl DebugProbe for MockJaylink {
        fn new_from_selector(
            _selector: impl Into<crate::DebugProbeSelector>,
        ) -> Result<Box<Self>, crate::DebugProbeError>
        where
            Self: Sized,
        {
            todo!()
        }

        fn get_name(&self) -> &str {
            todo!()
        }

        fn speed_khz(&self) -> u32 {
            todo!()
        }

        fn set_speed(&mut self, _speed_khz: u32) -> Result<u32, crate::DebugProbeError> {
            todo!()
        }

        fn attach(&mut self) -> Result<(), crate::DebugProbeError> {
            todo!()
        }

        fn detach(&mut self) -> Result<(), crate::Error> {
            todo!()
        }

        fn target_reset(&mut self) -> Result<(), crate::DebugProbeError> {
            todo!()
        }

        fn target_reset_assert(&mut self) -> Result<(), crate::DebugProbeError> {
            todo!()
        }

        fn target_reset_deassert(&mut self) -> Result<(), crate::DebugProbeError> {
            todo!()
        }

        fn select_protocol(
            &mut self,
            protocol: crate::WireProtocol,
        ) -> Result<(), crate::DebugProbeError> {
            self.protocol = protocol;

            Ok(())
        }

        fn active_protocol(&self) -> Option<crate::WireProtocol> {
            Some(self.protocol)
        }

        fn into_probe(self: Box<Self>) -> Box<dyn DebugProbe> {
            todo!()
        }
    }

    #[test]
    fn read_register() {
        let read_value = 12;

        let mut mock = MockJaylink::new();

        mock.add_read_response(DapAcknowledge::Ok, 0);
        mock.add_read_response(DapAcknowledge::Ok, read_value);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        let result = mock.raw_read_register(PortType::AccessPort, 4).unwrap();

        assert_eq!(result, read_value);
    }

    #[test]
    fn read_register_jtag() {
        let read_value = 12;

        let mut mock = MockJaylink::new();

        let result = mock.select_protocol(crate::WireProtocol::Jtag);
        assert!(result.is_ok());

        // Read request
        mock.add_jtag_response(PortType::AccessPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(
            PortType::DebugPort,
            12,
            true,
            DapAcknowledge::Ok,
            read_value,
            0,
        );
        // Check CTRL
        mock.add_jtag_response(PortType::DebugPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(PortType::DebugPort, 12, true, DapAcknowledge::Ok, 0, 0);

        let result = mock.raw_read_register(PortType::AccessPort, 4).unwrap();

        assert_eq!(result, read_value);
    }

    #[test]
    fn read_register_with_wait_response() {
        let read_value = 47;
        let mut mock = MockJaylink::new();

        mock.add_read_response(DapAcknowledge::Ok, 0);
        mock.add_read_response(DapAcknowledge::Wait, 0);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        //  When a wait response is received, the sticky overrun bit has to be cleared

        mock.add_transfer();
        mock.add_write_response(
            DapAcknowledge::Ok,
            mock.swd_settings.num_idle_cycles_between_writes,
        );
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        mock.add_transfer();
        mock.add_read_response(DapAcknowledge::Ok, 0);
        mock.add_read_response(DapAcknowledge::Ok, read_value);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        let result = mock.raw_read_register(PortType::AccessPort, 4).unwrap();

        assert_eq!(result, read_value);
    }

    #[test]
    fn read_register_with_wait_response_jtag() {
        let read_value = 47;
        let mut mock = MockJaylink::new();

        let result = mock.select_protocol(crate::WireProtocol::Jtag);
        assert!(result.is_ok());

        // Read
        mock.add_jtag_response(PortType::AccessPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(PortType::DebugPort, 12, true, DapAcknowledge::Wait, 0, 0);
        // Check CTRL
        mock.add_jtag_response(PortType::DebugPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(PortType::DebugPort, 12, true, DapAcknowledge::Ok, 0, 0);

        //  When a wait response is received, the sticky overrun bit has to be cleared
        mock.add_jtag_abort();

        // Retry
        mock.add_jtag_response(PortType::AccessPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(
            PortType::DebugPort,
            12,
            true,
            DapAcknowledge::Ok,
            read_value,
            0,
        );
        // Check CTRL
        mock.add_jtag_response(PortType::DebugPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(PortType::DebugPort, 12, true, DapAcknowledge::Ok, 0, 0);

        let result = mock.raw_read_register(PortType::AccessPort, 4).unwrap();

        assert_eq!(result, read_value);
    }

    #[test]
    fn write_register() {
        let mut mock = MockJaylink::new();

        let idle_cycles = mock.swd_settings.num_idle_cycles_between_writes;

        mock.add_write_response(DapAcknowledge::Ok, idle_cycles);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_before_write_verify);
        mock.add_read_response(DapAcknowledge::Ok, 0);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        mock.raw_write_register(PortType::AccessPort, 4, 0x123)
            .expect("Failed to write register");
    }

    #[test]
    fn write_register_jtag() {
        let mut mock = MockJaylink::new();

        let result = mock.select_protocol(crate::WireProtocol::Jtag);
        assert!(result.is_ok());

        mock.add_jtag_response(
            PortType::AccessPort,
            4,
            false,
            DapAcknowledge::Ok,
            0x0,
            0x123,
        );
        mock.add_jtag_response(
            PortType::DebugPort,
            12,
            true,
            DapAcknowledge::Ok,
            0x123,
            0x0,
        );
        // Check CTRL
        mock.add_jtag_response(PortType::DebugPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(PortType::DebugPort, 12, true, DapAcknowledge::Ok, 0, 0);

        mock.raw_write_register(PortType::AccessPort, 4, 0x123)
            .expect("Failed to write register");
    }

    #[test]
    fn write_register_with_wait_response() {
        let mut mock = MockJaylink::new();
        let idle_cycles = mock.swd_settings.num_idle_cycles_between_writes;

        mock.add_write_response(DapAcknowledge::Ok, idle_cycles);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_before_write_verify);
        mock.add_read_response(DapAcknowledge::Wait, 0);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        // Expect a Write to the ABORT register.
        mock.add_transfer();
        mock.add_write_response(DapAcknowledge::Ok, idle_cycles);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        // Second try to write register, with increased idle cycles.
        mock.add_transfer();
        mock.add_write_response(DapAcknowledge::Ok, idle_cycles * 2);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_before_write_verify);
        mock.add_read_response(DapAcknowledge::Ok, 0);
        mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

        mock.raw_write_register(PortType::AccessPort, 4, 0x123)
            .expect("Failed to write register");
    }

    #[test]
    fn write_register_with_wait_response_jtag() {
        let mut mock = MockJaylink::new();

        let result = mock.select_protocol(crate::WireProtocol::Jtag);
        assert!(result.is_ok());

        mock.add_jtag_response(
            PortType::AccessPort,
            4,
            false,
            DapAcknowledge::Ok,
            0x0,
            0x123,
        );
        mock.add_jtag_response(
            PortType::DebugPort,
            12,
            true,
            DapAcknowledge::Wait,
            0x0,
            0x0,
        );
        // Check CTRL
        mock.add_jtag_response(PortType::DebugPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(PortType::DebugPort, 12, true, DapAcknowledge::Ok, 0, 0);

        // Expect a Write to the ABORT register.
        mock.add_jtag_abort();

        // Second try to write register.
        mock.add_jtag_response(
            PortType::AccessPort,
            4,
            false,
            DapAcknowledge::Ok,
            0x0,
            0x123,
        );
        mock.add_jtag_response(
            PortType::DebugPort,
            12,
            true,
            DapAcknowledge::Ok,
            0x123,
            0x0,
        );
        // Check CTRL
        mock.add_jtag_response(PortType::DebugPort, 4, true, DapAcknowledge::Ok, 0, 0);
        mock.add_jtag_response(PortType::DebugPort, 12, true, DapAcknowledge::Ok, 0, 0);

        mock.raw_write_register(PortType::AccessPort, 4, 0x123)
            .expect("Failed to write register");
    }

    /// Test the correct handling of several transfers, with
    /// the appropriate extra reads added as necessary.
    mod transfer_handling {
        use crate::{
            architecture::arm::PortType,
            probe::jlink::arm::{perform_transfers, DapTransfer, TransferStatus},
        };

        use super::{DapAcknowledge, MockJaylink};

        #[test]
        fn single_dp_register_read() {
            let register_value = 32354;

            let mut transfers = vec![DapTransfer::read(PortType::DebugPort, 0)];

            let mut mock = MockJaylink::new();

            mock.add_read_response(DapAcknowledge::Ok, register_value);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, 16).expect("Failed to perform transfer");

            let transfer_result = &transfers[0];

            assert_eq!(transfer_result.status, TransferStatus::Ok);
            assert_eq!(transfer_result.value, register_value);
        }

        #[test]
        fn single_ap_register_read() {
            let register_value = 0x11_22_33_44u32;

            let mut transfers = vec![DapTransfer::read(PortType::AccessPort, 0)];

            let mut mock = MockJaylink::new();

            mock.add_read_response(DapAcknowledge::Ok, 0);
            mock.add_read_response(DapAcknowledge::Ok, register_value);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, 16).expect("Failed to perform transfer");

            let transfer_result = &transfers[0];

            assert_eq!(transfer_result.status, TransferStatus::Ok);
            assert_eq!(transfer_result.value, register_value);
        }

        #[test]
        fn ap_then_dp_register_read() {
            // When reading from the AP first, and then from the DP,
            // we need to insert an additional read from the RDBUFF register to
            // get the result for the AP read.

            let ap_read_value = 0x123223;
            let dp_read_value = 0xFFAABB;

            let mut transfers = vec![
                DapTransfer::read(PortType::AccessPort, 4),
                DapTransfer::read(PortType::DebugPort, 3),
            ];

            let mut mock = MockJaylink::new();

            mock.add_read_response(DapAcknowledge::Ok, 0);
            mock.add_read_response(DapAcknowledge::Ok, ap_read_value);
            mock.add_read_response(DapAcknowledge::Ok, dp_read_value);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, 16).expect("Failed to perform transfer");

            assert_eq!(transfers[0].status, TransferStatus::Ok);
            assert_eq!(transfers[0].value, ap_read_value);

            assert_eq!(transfers[1].status, TransferStatus::Ok);
            assert_eq!(transfers[1].value, dp_read_value);
        }

        #[test]
        fn dp_then_ap_register_read() {
            // When reading from the DP first, and then from the AP,
            // we need to insert an additional read from the RDBUFF register at the end
            // to get the result for the AP read.

            let ap_read_value = 0x123223;
            let dp_read_value = 0xFFAABB;

            let mut transfers = vec![
                DapTransfer::read(PortType::DebugPort, 3),
                DapTransfer::read(PortType::AccessPort, 4),
            ];

            let mut mock = MockJaylink::new();

            mock.add_read_response(DapAcknowledge::Ok, dp_read_value);
            mock.add_read_response(DapAcknowledge::Ok, 0);
            mock.add_read_response(DapAcknowledge::Ok, ap_read_value);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, 16).expect("Failed to perform transfer");

            assert_eq!(transfers[0].status, TransferStatus::Ok);
            assert_eq!(transfers[0].value, dp_read_value);

            assert_eq!(transfers[1].status, TransferStatus::Ok);
            assert_eq!(transfers[1].value, ap_read_value);
        }

        #[test]
        fn multiple_ap_read() {
            // When reading from the AP twice, only a single additional read from the
            // RDBUFF register is necessary.

            let ap_read_values = [1, 2];

            let mut transfers = vec![
                DapTransfer::read(PortType::AccessPort, 4),
                DapTransfer::read(PortType::AccessPort, 4),
            ];

            let mut mock = MockJaylink::new();

            mock.add_read_response(DapAcknowledge::Ok, 0);
            mock.add_read_response(DapAcknowledge::Ok, ap_read_values[0]);
            mock.add_read_response(DapAcknowledge::Ok, ap_read_values[1]);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, 16).expect("Failed to perform transfer");

            assert_eq!(transfers[0].status, TransferStatus::Ok);
            assert_eq!(transfers[0].value, ap_read_values[0]);

            assert_eq!(transfers[1].status, TransferStatus::Ok);
            assert_eq!(transfers[1].value, ap_read_values[1]);
        }

        #[test]
        fn multiple_dp_read() {
            // When reading from the DP twice, no additional reads have to be inserted.

            let dp_read_values = [1, 2];

            let mut transfers = vec![
                DapTransfer::read(PortType::DebugPort, 4),
                DapTransfer::read(PortType::DebugPort, 4),
            ];

            let mut mock = MockJaylink::new();

            mock.add_read_response(DapAcknowledge::Ok, dp_read_values[0]);
            mock.add_read_response(DapAcknowledge::Ok, dp_read_values[1]);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, 16).expect("Failed to perform transfer");

            assert_eq!(transfers[0].status, TransferStatus::Ok);
            assert_eq!(transfers[0].value, dp_read_values[0]);

            assert_eq!(transfers[1].status, TransferStatus::Ok);
            assert_eq!(transfers[1].value, dp_read_values[1]);
        }

        #[test]
        fn single_dp_register_write() {
            let mut transfers = vec![DapTransfer::write(PortType::DebugPort, 0, 0x1234_5678)];

            let mut mock = MockJaylink::new();
            let idle_cycles = mock.swd_settings.num_idle_cycles_between_writes;

            mock.add_write_response(
                DapAcknowledge::Ok,
                mock.swd_settings.num_idle_cycles_between_writes,
            );

            // To verify that the write was succesfull, an additional read is performed.
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, idle_cycles)
                .expect("Failed to perform transfer");

            let transfer_result = &transfers[0];

            assert_eq!(transfer_result.status, TransferStatus::Ok);
        }

        #[test]
        fn single_ap_register_write() {
            let mut transfers = vec![DapTransfer::write(PortType::AccessPort, 0, 0x1234_5678)];

            let mut mock = MockJaylink::new();

            let idle_cycles = mock.swd_settings.num_idle_cycles_between_writes;

            mock.add_write_response(
                DapAcknowledge::Ok,
                mock.swd_settings.num_idle_cycles_between_writes,
            );

            // To verify that the write was succesfull, an additional read is performed.
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_before_write_verify);
            mock.add_read_response(DapAcknowledge::Ok, 0);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, idle_cycles)
                .expect("Failed to perform transfer");

            let transfer_result = &transfers[0];

            assert_eq!(transfer_result.status, TransferStatus::Ok);
        }

        #[test]
        fn multiple_ap_register_write() {
            let mut transfers = vec![
                DapTransfer::write(PortType::AccessPort, 0, 0x1234_5678),
                DapTransfer::write(PortType::AccessPort, 0, 0xABABABAB),
            ];

            let mut mock = MockJaylink::new();

            let idle_cycles = mock.swd_settings.num_idle_cycles_between_writes;

            mock.add_write_response(
                DapAcknowledge::Ok,
                mock.swd_settings.num_idle_cycles_between_writes,
            );
            mock.add_write_response(
                DapAcknowledge::Ok,
                mock.swd_settings.num_idle_cycles_between_writes,
            );

            mock.add_idle_cycles(mock.swd_settings.idle_cycles_before_write_verify);
            mock.add_read_response(DapAcknowledge::Ok, 0);
            mock.add_idle_cycles(mock.swd_settings.idle_cycles_after_transfer);

            perform_transfers(&mut mock, &mut transfers, idle_cycles)
                .expect("Failed to perform transfer");

            assert_eq!(transfers[0].status, TransferStatus::Ok);
            assert_eq!(transfers[1].status, TransferStatus::Ok);
        }
    }
}