1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
use crate::error::Error;

use anyhow::{anyhow, Result};
use scroll::Pread;

/// An interface to be implemented for drivers that allow target memory access.
pub trait MemoryInterface {
    /// Does this interface support native 64-bit wide accesses
    ///
    /// If false all 64-bit operations may be split into 32 or 8 bit operations.
    /// Most callers will not need to pivot on this but it can be useful for
    /// picking the fastest bulk data transfer method.
    fn supports_native_64bit_access(&mut self) -> bool;

    /// Read a 64bit word of at `address`.
    ///
    /// The address where the read should be performed at has to be word aligned.
    /// Returns `AccessPortError::MemoryNotAligned` if this does not hold true.
    fn read_word_64(&mut self, address: u64) -> Result<u64, Error>;

    /// Read a 32bit word of at `address`.
    ///
    /// The address where the read should be performed at has to be word aligned.
    /// Returns [`Error::MemoryNotAligned`] if this does not hold true.
    fn read_word_32(&mut self, address: u64) -> Result<u32, Error>;

    /// Read an 8bit word of at `address`.
    fn read_word_8(&mut self, address: u64) -> Result<u8, Error>;

    /// Read a block of 64bit words at `address`.
    ///
    /// The number of words read is `data.len()`.
    /// The address where the read should be performed at has to be word aligned.
    /// Returns [`Error::MemoryNotAligned`] if this does not hold true.
    fn read_64(&mut self, address: u64, data: &mut [u64]) -> Result<(), Error>;

    /// Read a block of 32bit words at `address`.
    ///
    /// The number of words read is `data.len()`.
    /// The address where the read should be performed at has to be word aligned.
    /// Returns [`Error::MemoryNotAligned`] if this does not hold true.
    fn read_32(&mut self, address: u64, data: &mut [u32]) -> Result<(), Error>;

    /// Read a block of 8bit words at `address`.
    fn read_8(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error>;

    /// Reads bytes using 64 bit memory access. Address must be 64 bit aligned
    /// and data must be an exact multiple of 8.
    fn read_mem_64bit(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
        // Default implementation uses `read_64`, then converts u64 values back
        // to bytes. Assumes target is little endian. May be overridden to
        // provide an implementation that avoids heap allocation and endian
        // conversions. Must be overridden for big endian targets.
        if data.len() % 8 != 0 {
            return Err(Error::Other(anyhow!(
                "Call to read_mem_64bit with data.len() not a multiple of 8"
            )));
        }
        let mut buffer = vec![0u64; data.len() / 8];
        self.read_64(address, &mut buffer)?;
        for (bytes, value) in data.chunks_exact_mut(8).zip(buffer.iter()) {
            bytes.copy_from_slice(&u64::to_le_bytes(*value));
        }
        Ok(())
    }

    /// Reads bytes using 32 bit memory access. Address must be 32 bit aligned
    /// and data must be an exact multiple of 4.
    fn read_mem_32bit(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
        // Default implementation uses `read_32`, then converts u32 values back
        // to bytes. Assumes target is little endian. May be overridden to
        // provide an implementation that avoids heap allocation and endian
        // conversions. Must be overridden for big endian targets.
        if data.len() % 4 != 0 {
            return Err(Error::Other(anyhow!(
                "Call to read_mem_32bit with data.len() not a multiple of 4"
            )));
        }
        let mut buffer = vec![0u32; data.len() / 4];
        self.read_32(address, &mut buffer)?;
        for (bytes, value) in data.chunks_exact_mut(4).zip(buffer.iter()) {
            bytes.copy_from_slice(&u32::to_le_bytes(*value));
        }
        Ok(())
    }

    /// Read data from `address`.
    ///
    /// This function tries to use the fastest way of reading data, so there is no
    /// guarantee which kind of memory access is used. The function might also read more
    /// data than requested, e.g. when the start address is not aligned to a 32-bit boundary.
    ///
    /// For more control, the `read_x` functiongs, e.g. [`MemoryInterface::read_32()`], can be
    /// used.
    ///
    ///  Generally faster than `read_8`.
    fn read(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
        if self.supports_native_64bit_access() && address % 8 == 0 && data.len() % 8 == 0 {
            // Avoid heap allocation and copy if we don't need it.
            self.read_mem_64bit(address, data)?;
        } else if address % 4 == 0 && data.len() % 4 == 0 {
            // Avoid heap allocation and copy if we don't need it.
            self.read_mem_32bit(address, data)?;
        } else {
            let start_extra_count = (address % 4) as usize;
            let mut buffer = vec![0u8; (start_extra_count + data.len() + 3) / 4 * 4];
            self.read_mem_32bit(address - start_extra_count as u64, &mut buffer)?;
            data.copy_from_slice(&buffer[start_extra_count..start_extra_count + data.len()]);
        }
        Ok(())
    }

    /// Write a 64bit word at `address`.
    ///
    /// The address where the write should be performed at has to be word aligned.
    /// Returns [`Error::MemoryNotAligned`] if this does not hold true.
    fn write_word_64(&mut self, address: u64, data: u64) -> Result<(), Error>;

    /// Write a 32bit word at `address`.
    ///
    /// The address where the write should be performed at has to be word aligned.
    /// Returns [`Error::MemoryNotAligned`] if this does not hold true.
    fn write_word_32(&mut self, address: u64, data: u32) -> Result<(), Error>;

    /// Write an 8bit word at `address`.
    fn write_word_8(&mut self, address: u64, data: u8) -> Result<(), Error>;

    /// Write a block of 64bit words at `address`.
    ///
    /// The number of words written is `data.len()`.
    /// The address where the write should be performed at has to be word aligned.
    /// Returns [`Error::MemoryNotAligned`] if this does not hold true.
    fn write_64(&mut self, address: u64, data: &[u64]) -> Result<(), Error>;

    /// Write a block of 32bit words at `address`.
    ///
    /// The number of words written is `data.len()`.
    /// The address where the write should be performed at has to be word aligned.
    /// Returns [`Error::MemoryNotAligned`] if this does not hold true.
    fn write_32(&mut self, address: u64, data: &[u32]) -> Result<(), Error>;

    /// Write a block of 8bit words at `address`.
    fn write_8(&mut self, address: u64, data: &[u8]) -> Result<(), Error>;

    /// Writes bytes using 64 bit memory access. Address must be 64 bit aligned
    /// and data must be an exact multiple of 8.
    fn write_mem_64bit(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        // Default implementation uses `write_64`, then converts u64 values back
        // to bytes. Assumes target is little endian. May be overridden to
        // provide an implementation that avoids heap allocation and endian
        // conversions. Must be overridden for big endian targets.
        if data.len() % 8 != 0 {
            return Err(Error::Other(anyhow!(
                "Call to read_mem_64bit with data.len() not a multiple of 8"
            )));
        }
        let mut buffer = vec![0u64; data.len() / 8];
        for (bytes, value) in data.chunks_exact(8).zip(buffer.iter_mut()) {
            *value = bytes
                .pread_with(0, scroll::LE)
                .expect("an u64 - this is a bug, please report it");
        }

        self.write_64(address, &buffer)?;
        Ok(())
    }

    /// Writes bytes using 32 bit memory access. Address must be 32 bit aligned
    /// and data must be an exact multiple of 8.
    fn write_mem_32bit(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        // Default implementation uses `write_32`, then converts u32 values back
        // to bytes. Assumes target is little endian. May be overridden to
        // provide an implementation that avoids heap allocation and endian
        // conversions. Must be overridden for big endian targets.
        if data.len() % 4 != 0 {
            return Err(Error::Other(anyhow!(
                "Call to read_mem_32bit with data.len() not a multiple of 4"
            )));
        }
        let mut buffer = vec![0u32; data.len() / 4];
        for (bytes, value) in data.chunks_exact(4).zip(buffer.iter_mut()) {
            *value = bytes
                .pread_with(0, scroll::LE)
                .expect("an u32 - this is a bug, please report it");
        }

        self.write_32(address, &buffer)?;
        Ok(())
    }

    /// Write a block of 8bit words at `address`. May use 64 bit memory access,
    /// so should only be used if reading memory locations that don't have side
    /// effects. Generally faster than [`MemoryInterface::write_8`].
    ///
    /// If the target does not support 8-bit aligned access, and `address` is not
    /// aligned on a 32-bit boundary, this function will return a [`Error::MemoryNotAligned`] error.
    fn write(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        let len = data.len();
        let start_extra_count = 4 - (address % 4) as usize;
        let end_extra_count = (len - start_extra_count) % 4;
        let inbetween_count = len - start_extra_count - end_extra_count;
        assert!(start_extra_count < 4);
        assert!(end_extra_count < 4);
        assert!(inbetween_count % 4 == 0);

        // If we do not have 32 bit aligned access we first check that we can do 8 bit aligned access on this platform.
        // If we cannot we throw an error.
        // If we can we read the first n < 4 bytes up until the word aligned address that comes next.
        if address % 4 != 0 || len % 4 != 0 {
            // If we do not support 8 bit transfers we have to bail because we can only do 32 bit word aligned transers.
            if !self.supports_8bit_transfers()? {
                return Err(Error::MemoryNotAligned {
                    address,
                    alignment: 4,
                });
            }

            // We first do an 8 bit write of the first < 4 bytes up until the 4 byte aligned boundary.
            self.write_8(address, &data[..start_extra_count])?;
        }

        let mut buffer = vec![0u32; inbetween_count / 4];
        for (bytes, value) in data.chunks_exact(4).zip(buffer.iter_mut()) {
            *value = u32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]);
        }
        self.write_32(address, &buffer)?;

        // We read the remaining bytes that we did not read yet which is always n < 4.
        if end_extra_count > 0 {
            self.write_8(address, &data[..start_extra_count])?;
        }

        Ok(())
    }

    /// Returns whether the current platform supports native 8bit transfers.
    fn supports_8bit_transfers(&self) -> Result<bool, Error>;

    /// Flush any outstanding operations.
    ///
    /// For performance, debug probe implementations may choose to batch writes;
    /// to assure that any such batched writes have in fact been issued, `flush`
    /// can be called.  Takes no arguments, but may return failure if a batched
    /// operation fails.
    fn flush(&mut self) -> Result<(), Error>;
}

impl<T> MemoryInterface for &mut T
where
    T: MemoryInterface,
{
    fn supports_native_64bit_access(&mut self) -> bool {
        (*self).supports_native_64bit_access()
    }

    fn read_word_64(&mut self, address: u64) -> Result<u64, Error> {
        (*self).read_word_64(address)
    }

    fn read_word_32(&mut self, address: u64) -> Result<u32, Error> {
        (*self).read_word_32(address)
    }

    fn read_word_8(&mut self, address: u64) -> Result<u8, Error> {
        (*self).read_word_8(address)
    }

    fn read_64(&mut self, address: u64, data: &mut [u64]) -> Result<(), Error> {
        (*self).read_64(address, data)
    }

    fn read_32(&mut self, address: u64, data: &mut [u32]) -> Result<(), Error> {
        (*self).read_32(address, data)
    }

    fn read_8(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
        (*self).read_8(address, data)
    }

    fn read(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
        (*self).read(address, data)
    }

    fn write_word_64(&mut self, address: u64, data: u64) -> Result<(), Error> {
        (*self).write_word_64(address, data)
    }

    fn write_word_32(&mut self, address: u64, data: u32) -> Result<(), Error> {
        (*self).write_word_32(address, data)
    }

    fn write_word_8(&mut self, address: u64, data: u8) -> Result<(), Error> {
        (*self).write_word_8(address, data)
    }

    fn write_64(&mut self, address: u64, data: &[u64]) -> Result<(), Error> {
        (*self).write_64(address, data)
    }

    fn write_32(&mut self, address: u64, data: &[u32]) -> Result<(), Error> {
        (*self).write_32(address, data)
    }

    fn write_8(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        (*self).write_8(address, data)
    }

    fn write(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        (*self).write(address, data)
    }

    fn supports_8bit_transfers(&self) -> Result<bool, Error> {
        MemoryInterface::supports_8bit_transfers(*self)
    }

    fn flush(&mut self) -> Result<(), Error> {
        (*self).flush()
    }
}

// Helper functions to validate address space constraints

/// Validate that an input address is valid for 32-bit only systems
pub(crate) fn valid_32bit_address(address: u64) -> Result<u32, Error> {
    let address: u32 = address
        .try_into()
        .map_err(|_| anyhow!("Address {:#08x} out of range", address))?;

    Ok(address)
}