1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use probe_rs_target::{Architecture, ChipFamily};

use super::{Core, MemoryRegion, RawFlashAlgorithm, RegistryError, TargetDescriptionSource};
use crate::architecture::arm::sequences::{
    atsame5x::AtSAME5x,
    infineon::XMC4000,
    nrf52::Nrf52,
    nrf53::Nrf5340,
    nrf91::Nrf9160,
    nxp::{MIMXRT10xx, MIMXRT11xx, LPC55S69},
    stm32f_series::Stm32fSeries,
    stm32h7::Stm32h7,
    ArmDebugSequence,
};
use crate::architecture::riscv::sequences::esp32c3::ESP32C3;
use crate::architecture::riscv::sequences::{DefaultRiscvSequence, RiscvDebugSequence};
use crate::flashing::FlashLoader;
use std::sync::Arc;

use crate::architecture::arm::sequences::DefaultArmSequence;

/// This describes a complete target with a fixed chip model and variant.
#[derive(Clone)]
pub struct Target {
    /// The name of the target.
    pub name: String,
    /// The cores of the target.
    pub cores: Vec<Core>,
    /// The name of the flash algorithm.
    pub flash_algorithms: Vec<RawFlashAlgorithm>,
    /// The memory map of the target.
    pub memory_map: Vec<MemoryRegion>,
    /// Source of the target description. Used for diagnostics.
    pub(crate) source: TargetDescriptionSource,
    /// Debug sequences for the given target.
    pub debug_sequence: DebugSequence,
}

impl std::fmt::Debug for Target {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "Target {{
            identifier: {:?},
            flash_algorithms: {:?},
            memory_map: {:?},
        }}",
            self.name, self.flash_algorithms, self.memory_map
        )
    }
}

/// An error occurred while parsing the target description.
pub type TargetParseError = serde_yaml::Error;

impl Target {
    /// Create a new target for the given details.
    ///
    /// We suggest never using this function directly.
    /// Use (crate::registry::Registry::get_target)[`Registry::get_target`] instead.
    /// This will ensure that the used target is valid.
    ///
    /// The user has to make sure that all the cores have the same [`Architecture`].
    /// In any case, this function will always just use the architecture of the first core in any further functionality.
    /// In practice we have never encountered a [`Chip`] with mixed architectures so this should not be of issue.
    ///
    /// Furthermore, the user has to ensure that any [`Core`] in `flash_algorithms[n].cores` is present in `cores` as well.
    pub(crate) fn new(
        family: &ChipFamily,
        chip_name: impl AsRef<str>,
    ) -> Result<Target, RegistryError> {
        // Make sure we are given a valid family:
        family
            .validate()
            .map_err(|e| RegistryError::InvalidChipFamilyDefinition(Box::new(family.clone()), e))?;

        let chip = family
            .variants
            .iter()
            .find(|chip| chip.name == chip_name.as_ref())
            .ok_or_else(|| RegistryError::ChipNotFound(chip_name.as_ref().to_string()))?;

        let mut flash_algorithms = Vec::new();
        for algo_name in chip.flash_algorithms.iter() {
            let algo = family.get_algorithm(algo_name).expect(
                "The required flash algorithm was not found. This is a bug. Please report it.",
            );

            flash_algorithms.push(algo.clone());
        }

        // We always just take the architecture of the first core which is okay if there is no mixed architectures.
        let mut debug_sequence = match chip.cores[0].core_type.architecture() {
            Architecture::Arm => DebugSequence::Arm(DefaultArmSequence::create()),
            Architecture::Riscv => DebugSequence::Riscv(DefaultRiscvSequence::create()),
        };

        if chip.name.starts_with("MIMXRT10") {
            tracing::warn!("Using custom sequence for MIMXRT10xx");
            debug_sequence = DebugSequence::Arm(MIMXRT10xx::create());
        } else if chip.name.starts_with("MIMXRT11") {
            tracing::warn!("Using custom sequence for MIMXRT11xx");
            debug_sequence = DebugSequence::Arm(MIMXRT11xx::create());
        } else if chip.name.starts_with("LPC55S16") || chip.name.starts_with("LPC55S69") {
            tracing::warn!("Using custom sequence for LPC55S16/LPC55S69");
            debug_sequence = DebugSequence::Arm(LPC55S69::create());
        } else if chip.name.starts_with("esp32c3") {
            tracing::warn!("Using custom sequence for ESP32c3");
            debug_sequence = DebugSequence::Riscv(ESP32C3::create());
        } else if chip.name.starts_with("nRF5340") {
            tracing::warn!("Using custom sequence for nRF5340");
            debug_sequence = DebugSequence::Arm(Nrf5340::create());
        } else if chip.name.starts_with("nRF52") {
            tracing::warn!("Using custom sequence for nRF52");
            debug_sequence = DebugSequence::Arm(Nrf52::create());
        } else if chip.name.starts_with("nRF9160") {
            tracing::warn!("Using custom sequence for nRF9160");
            debug_sequence = DebugSequence::Arm(Nrf9160::create());
        } else if chip.name.starts_with("STM32H7") {
            tracing::warn!("Using custom sequence for STM32H7");
            debug_sequence = DebugSequence::Arm(Stm32h7::create());
        } else if chip.name.starts_with("STM32F1")
            || chip.name.starts_with("STM32F2")
            || chip.name.starts_with("STM32F4")
            || chip.name.starts_with("STM32F7")
        {
            tracing::warn!("Using custom sequence for STM32F1/2/4/7");
            debug_sequence = DebugSequence::Arm(Stm32fSeries::create());
        } else if chip.name.starts_with("ATSAMD5") || chip.name.starts_with("ATSAME5") {
            tracing::warn!("Using custom sequence for {}", chip.name);
            debug_sequence = DebugSequence::Arm(AtSAME5x::create());
        } else if chip.name.starts_with("XMC4") {
            tracing::warn!("Using custom sequence for XMC4000");
            debug_sequence = DebugSequence::Arm(XMC4000::create());
        }

        Ok(Target {
            name: chip.name.clone(),
            cores: chip.cores.clone(),
            flash_algorithms,
            source: family.source.clone(),
            memory_map: chip.memory_map.clone(),
            debug_sequence,
        })
    }

    /// Get the architecture of the target
    pub fn architecture(&self) -> Architecture {
        let target_arch = self.cores[0].core_type.architecture();

        // This should be ensured when a `ChipFamily` is loaded.
        assert!(
            self.cores
                .iter()
                .map(|core| core.core_type.architecture())
                .all(|core_arch| core_arch == target_arch),
            "Not all cores of the target are of the same architecture. Probe-rs doesn't support this (yet). If you see this, it is a bug. Please file an issue."
        );

        target_arch
    }

    /// Source description of this target.
    pub fn source(&self) -> &TargetDescriptionSource {
        &self.source
    }

    /// Create a [FlashLoader] for this target, which can be used
    /// to program its non-volatile memory.
    pub fn flash_loader(&self) -> FlashLoader {
        FlashLoader::new(self.memory_map.clone(), self.source.clone())
    }

    /// Gets a [RawFlashAlgorithm] by name.
    pub(crate) fn flash_algorithm_by_name(&self, name: &str) -> Option<&RawFlashAlgorithm> {
        self.flash_algorithms.iter().find(|a| a.name == name)
    }

    /// Gets the core index from the core name
    pub(crate) fn core_index_by_name(&self, name: &str) -> Option<usize> {
        self.cores.iter().position(|c| c.name == name)
    }

    /// Gets the first found [MemoryRegion] that contains the given address
    pub(crate) fn get_memory_region_by_address(&self, address: u64) -> Option<&MemoryRegion> {
        self.memory_map.iter().find(|region| match region {
            MemoryRegion::Ram(rr) if rr.range.contains(&address) => true,
            MemoryRegion::Generic(gr) if gr.range.contains(&address) => true,
            MemoryRegion::Nvm(nr) if nr.range.contains(&address) => true,
            _ => false,
        })
    }
}

/// Selector for the debug target.
#[derive(Debug, Clone)]
pub enum TargetSelector {
    /// Specify the name of a target, which will
    /// be used to search the internal list of
    /// targets.
    Unspecified(String),
    /// Directly specify a target.
    Specified(Target),
    /// Try to automatically identify the target,
    /// by reading identifying information from
    /// the probe and / or target.
    Auto,
}

impl From<&str> for TargetSelector {
    fn from(value: &str) -> Self {
        TargetSelector::Unspecified(value.into())
    }
}

impl From<&String> for TargetSelector {
    fn from(value: &String) -> Self {
        TargetSelector::Unspecified(value.into())
    }
}

impl From<String> for TargetSelector {
    fn from(value: String) -> Self {
        TargetSelector::Unspecified(value)
    }
}

impl From<()> for TargetSelector {
    fn from(_value: ()) -> Self {
        TargetSelector::Auto
    }
}

impl From<Target> for TargetSelector {
    fn from(target: Target) -> Self {
        TargetSelector::Specified(target)
    }
}

/// This is the type to denote a general debug sequence.  
/// It can differentiate between ARM and RISC-V for now.  
/// Currently, only the ARM variant does something sensible;  
/// RISC-V will be ignored when encountered.
#[derive(Clone)]
pub enum DebugSequence {
    /// An ARM debug sequence.
    Arm(Arc<dyn ArmDebugSequence>),
    /// A RISC-V debug sequence.
    Riscv(Arc<dyn RiscvDebugSequence>),
}