1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//! Sequences for STM32H7 devices

use std::sync::Arc;

use super::ArmDebugSequence;
use crate::architecture::arm::{
    ap::MemoryAp,
    component::{TraceFunnel, TraceSink},
    memory::{
        adi_v5_memory_interface::ArmProbe, romtable::RomTableError, CoresightComponent,
        PeripheralType,
    },
    ApAddress, ArmError, ArmProbeInterface, DpAddress,
};

// Base address of the trace funnel that directs trace data to the SWO peripheral.
const SWTF_BASE_ADDRESS: u64 = 0xE00E_4000;

// Base address of the trace funnel that directs trace data to the TPIU and ETF
const CSTF_BASE_ADDRESS: u64 = 0xE00F_3000;

/// Specifier for which trace funnel to access.
///
/// # Note
/// The values of the enum are equivalent to the base addresses of the trace funnels.
#[repr(u64)]
#[derive(Copy, Clone, Debug)]
enum TraceFunnelId {
    /// The funnel feeding the SWO peripheral.
    SerialWire = SWTF_BASE_ADDRESS,

    /// The funnel feeding the TPIU and ETF.
    CoreSight = CSTF_BASE_ADDRESS,
}

/// Marker struct indicating initialization sequencing for STM32H7 family parts.
pub struct Stm32h7 {}

impl Stm32h7 {
    /// Create the sequencer for the H7 family of parts.
    pub fn create() -> Arc<Self> {
        Arc::new(Self {})
    }

    /// Configure all debug components on the chip.
    pub fn enable_debug_components(
        &self,
        memory: &mut (impl ArmProbe + ?Sized),
        enable: bool,
    ) -> Result<(), ArmError> {
        if enable {
            tracing::info!("Enabling STM32H7 debug components");
        } else {
            tracing::info!("Disabling STM32H7 debug components");
        }

        let mut control = dbgmcu::Control::read(memory)?;

        // There are debug components in the D1 and D2 clock domains. This ensures we can access
        // CoreSight components in these power domains at all times.
        control.enable_d1_clock(enable);
        control.enable_d3_clock(enable);

        // The TRACECK has to be enabled to communicate with the TPIU.
        control.enable_traceck(enable);

        // Configure debug connection in all power modes.
        control.enable_standby_debug(enable);
        control.enable_sleep_debug(enable);
        control.enable_stop_debug(enable);

        control.write(memory)?;

        Ok(())
    }
}

mod dbgmcu {
    use crate::architecture::arm::{memory::adi_v5_memory_interface::ArmProbe, ArmError};
    use bitfield::bitfield;

    /// The base address of the DBGMCU component
    const DBGMCU: u64 = 0xE00E_1000;

    bitfield! {
        /// The control register (CR) of the DBGMCU. This register is described in "RM0433: STM32H7
        /// family reference manual" section 60.5.8
        pub struct Control(u32);
        impl Debug;

        pub u8, dbgsleep_d1, enable_sleep_debug: 0;
        pub u8, dbgstop_d1, enable_stop_debug: 1;
        pub u8, dbgstby_d1, enable_standby_debug: 2;

        pub u8, d3dbgcken, enable_d3_clock: 22;
        pub u8, d1dbgcken, enable_d1_clock: 21;
        pub u8, traceclken, enable_traceck: 20;
    }

    impl Control {
        /// The offset of the Control register in the DBGMCU block.
        const ADDRESS: u64 = 0x04;

        /// Read the control register from memory.
        pub fn read(memory: &mut (impl ArmProbe + ?Sized)) -> Result<Self, ArmError> {
            let contents = memory.read_word_32(DBGMCU + Self::ADDRESS)?;
            Ok(Self(contents))
        }

        /// Write the control register to memory.
        pub fn write(&mut self, memory: &mut (impl ArmProbe + ?Sized)) -> Result<(), ArmError> {
            memory.write_word_32(DBGMCU + Self::ADDRESS, self.0)
        }
    }
}

/// Get the Coresight component associated with one of the trace funnels.
///
/// # Args
/// * `components` - All of the coresight components discovered on the device.
/// * `trace_funnel` - The ID of the desired trace funnel.
///
/// # Returns
/// The coresight component representing the desired trace funnel.
fn find_trace_funnel(
    components: &[CoresightComponent],
    trace_funnel: TraceFunnelId,
) -> Result<&CoresightComponent, ArmError> {
    components
        .iter()
        .find_map(|comp| {
            comp.iter().find(|component| {
                let id = component.component.id();
                id.peripheral_id().is_of_type(PeripheralType::TraceFunnel)
                    && id.component_address() == trace_funnel as u64
            })
        })
        .ok_or_else(|| {
            ArmError::from(RomTableError::ComponentNotFound(
                PeripheralType::TraceFunnel,
            ))
        })
}

impl ArmDebugSequence for Stm32h7 {
    fn debug_device_unlock(
        &self,
        interface: &mut dyn ArmProbeInterface,
        _default_ap: MemoryAp,
        _permissions: &crate::Permissions,
    ) -> Result<(), ArmError> {
        // Power up the debug components through AP2, which is the defualt AP debug port.
        let ap = MemoryAp::new(ApAddress {
            dp: DpAddress::Default,
            ap: 2,
        });

        let mut memory = interface.memory_interface(ap)?;
        self.enable_debug_components(&mut *memory, true)?;

        Ok(())
    }

    fn debug_core_stop(&self, interface: &mut dyn ArmProbeInterface) -> Result<(), ArmError> {
        // Power up the debug components through AP2, which is the defualt AP debug port.
        let ap = MemoryAp::new(ApAddress {
            dp: DpAddress::Default,
            ap: 2,
        });

        let mut memory = interface.memory_interface(ap)?;
        self.enable_debug_components(&mut *memory, false)?;

        Ok(())
    }

    fn trace_start(
        &self,
        interface: &mut dyn ArmProbeInterface,
        components: &[CoresightComponent],
        sink: &TraceSink,
    ) -> Result<(), ArmError> {
        tracing::warn!("Enabling tracing for STM32H7");

        // Configure the two trace funnels in the H7 debug system to route trace data to the
        // appropriate destination. The CSTF feeds the TPIU and ETF peripherals.
        let mut cstf = TraceFunnel::new(
            interface,
            find_trace_funnel(components, TraceFunnelId::CoreSight)?,
        );
        cstf.unlock()?;
        match sink {
            TraceSink::Swo(_) => cstf.enable_port(0b00)?,
            TraceSink::Tpiu(_) | TraceSink::TraceMemory => cstf.enable_port(0b10)?,
        }

        // The SWTF needs to be configured to route traffic to SWO. When not in use, it needs to be
        // disabled so that the SWO peripheral does not propogate buffer overflows through the
        // trace bus via busy signalling.
        let mut swtf = TraceFunnel::new(
            interface,
            find_trace_funnel(components, TraceFunnelId::SerialWire)?,
        );
        swtf.unlock()?;
        if matches!(sink, TraceSink::Swo(_)) {
            swtf.enable_port(0b01)?;
        } else {
            swtf.enable_port(0b00)?;
        }

        Ok(())
    }
}