1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
//! Register types and the core interface for armv8-M

use crate::architecture::arm::memory::adi_v5_memory_interface::ArmProbe;
use crate::architecture::arm::sequences::ArmDebugSequence;
use crate::architecture::arm::ArmError;
use crate::core::RegisterFile;
use crate::error::Error;
use crate::memory::valid_32bit_address;
use crate::{architecture::arm::core::register, CoreStatus, HaltReason, MemoryInterface};
use crate::{Architecture, CoreInformation};
use crate::{CoreInterface, CoreType, InstructionSet, MemoryMappedRegister};
use crate::{RegisterId, RegisterValue};
use anyhow::Result;

use bitfield::bitfield;

use super::cortex_m::Mvfr0;
use super::{CortexMState, Dfsr, CORTEX_M_COMMON_REGS, CORTEX_M_WITH_FP_REGS};
use std::sync::Arc;
use std::{
    mem::size_of,
    time::{Duration, Instant},
};

/// The state of a core that can be used to persist core state across calls to multiple different cores.
pub struct Armv8m<'probe> {
    memory: Box<dyn ArmProbe + 'probe>,

    state: &'probe mut CortexMState,

    sequence: Arc<dyn ArmDebugSequence>,
}

impl<'probe> Armv8m<'probe> {
    pub(crate) fn new(
        mut memory: Box<dyn ArmProbe + 'probe>,
        state: &'probe mut CortexMState,
        sequence: Arc<dyn ArmDebugSequence>,
    ) -> Result<Self, Error> {
        if !state.initialized() {
            // determine current state
            let dhcsr = Dhcsr(memory.read_word_32(Dhcsr::ADDRESS)?);

            tracing::debug!("State when connecting: {:x?}", dhcsr);

            let core_state = if dhcsr.s_sleep() {
                CoreStatus::Sleeping
            } else if dhcsr.s_halt() {
                let dfsr = Dfsr(memory.read_word_32(Dfsr::ADDRESS)?);

                let reason = dfsr.halt_reason();

                tracing::debug!("Core was halted when connecting, reason: {:?}", reason);

                CoreStatus::Halted(reason)
            } else {
                CoreStatus::Running
            };

            // Clear DFSR register. The bits in the register are sticky,
            // so we clear them here to ensure that that none are set.
            let dfsr_clear = Dfsr::clear_all();

            memory.write_word_32(Dfsr::ADDRESS, dfsr_clear.into())?;

            state.current_state = core_state;
            state.fp_present = Mvfr0(memory.read_word_32(Mvfr0::ADDRESS)?).fp_present();

            state.initialize();
        }

        Ok(Self {
            memory,
            state,
            sequence,
        })
    }
}

impl<'probe> CoreInterface for Armv8m<'probe> {
    fn wait_for_core_halted(&mut self, timeout: Duration) -> Result<(), Error> {
        // Wait until halted state is active again.
        let start = Instant::now();

        while start.elapsed() < timeout {
            if self.core_halted()? {
                return Ok(());
            }

            std::thread::sleep(Duration::from_millis(1));
        }
        Err(Error::Arm(ArmError::Timeout))
    }

    fn core_halted(&mut self) -> Result<bool, Error> {
        // Wait until halted state is active again.
        Ok(self.status()?.is_halted())
    }

    fn halt(&mut self, timeout: Duration) -> Result<CoreInformation, Error> {
        let mut value = Dhcsr(0);
        value.set_c_halt(true);
        value.set_c_debugen(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;

        self.wait_for_core_halted(timeout)?;

        // Update core status
        let _ = self.status()?;

        // try to read the program counter
        let pc_value = self.read_core_reg(register::PC.id)?;

        // get pc
        Ok(CoreInformation {
            pc: pc_value.try_into()?,
        })
    }

    fn run(&mut self) -> Result<(), Error> {
        // Before we run, we always perform a single instruction step, to account for possible breakpoints that might get us stuck on the current instruction.
        self.step()?;

        let mut value = Dhcsr(0);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;
        self.memory.flush()?;

        // We assume that the core is running now
        self.state.current_state = CoreStatus::Running;

        Ok(())
    }

    fn reset(&mut self) -> Result<(), Error> {
        self.sequence
            .reset_system(&mut *self.memory, crate::CoreType::Armv8m, None)?;
        Ok(())
    }

    fn reset_and_halt(&mut self, _timeout: Duration) -> Result<CoreInformation, Error> {
        // Set the vc_corereset bit in the DEMCR register.
        // This will halt the core after reset.

        self.sequence
            .reset_catch_set(&mut *self.memory, crate::CoreType::Armv8m, None)?;
        self.sequence
            .reset_system(&mut *self.memory, crate::CoreType::Armv8m, None)?;

        // Update core status
        let _ = self.status()?;

        const XPSR_THUMB: u32 = 1 << 24;
        let xpsr_value: u32 = self.read_core_reg(register::XPSR.id)?.try_into()?;
        if xpsr_value & XPSR_THUMB == 0 {
            self.write_core_reg(register::XPSR.id, (xpsr_value | XPSR_THUMB).into())?;
        }

        self.sequence
            .reset_catch_clear(&mut *self.memory, crate::CoreType::Armv8m, None)?;

        // try to read the program counter
        let pc_value = self.read_core_reg(register::PC.id)?;

        // get pc
        Ok(CoreInformation {
            pc: pc_value.try_into()?,
        })
    }

    fn step(&mut self) -> Result<CoreInformation, Error> {
        // First check if we stopped on a breakpoint, because this requires special handling before we can continue.
        let pc_before_step = self.read_core_reg(self.registers().program_counter().id)?;
        let was_breakpoint = if matches!(
            self.state.current_state,
            CoreStatus::Halted(HaltReason::Breakpoint(_))
        ) {
            self.enable_breakpoints(false)?;
            true
        } else {
            false
        };

        let mut value = Dhcsr(0);
        // Leave halted state.
        // Step one instruction.
        value.set_c_step(true);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.set_c_maskints(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;
        self.memory.flush()?;

        self.wait_for_core_halted(Duration::from_millis(100))?;

        // Try to read the new program counter.
        let mut pc_after_step = self.read_core_reg(self.registers().program_counter().id)?;

        // Re-enable breakpoints before we continue.
        if was_breakpoint {
            // If we were stopped on a software breakpoint, then we need to manually advance the PC, or else we will be stuck here forever.
            if pc_before_step == pc_after_step
                && !self
                    .hw_breakpoints()?
                    .contains(&pc_before_step.try_into().ok())
            {
                tracing::debug!("Encountered a breakpoint instruction @ {}. We need to manually advance the program counter to the next instruction.", pc_after_step);
                // Advance the program counter by the architecture specific byte size of the BKPT instruction.
                pc_after_step.incremenet_address(2)?;
                self.write_core_reg(self.registers().program_counter().id, pc_after_step)?;
            }
            self.enable_breakpoints(true)?;
        }

        Ok(CoreInformation {
            pc: pc_after_step.try_into()?,
        })
    }

    fn read_core_reg(&mut self, address: RegisterId) -> Result<RegisterValue, Error> {
        if self.state.current_state.is_halted() {
            let value = super::cortex_m::read_core_reg(&mut *self.memory, address)?;
            Ok(value.into())
        } else {
            Err(Error::Arm(ArmError::CoreNotHalted))
        }
    }

    fn write_core_reg(&mut self, address: RegisterId, value: RegisterValue) -> Result<(), Error> {
        if self.state.current_state.is_halted() {
            super::cortex_m::write_core_reg(&mut *self.memory, address, value.try_into()?)?;
            Ok(())
        } else {
            Err(Error::Arm(ArmError::CoreNotHalted))
        }
    }

    fn available_breakpoint_units(&mut self) -> Result<u32, Error> {
        let raw_val = self.memory.read_word_32(FpCtrl::ADDRESS)?;

        let reg = FpCtrl::from(raw_val);

        Ok(reg.num_code())
    }

    fn enable_breakpoints(&mut self, state: bool) -> Result<(), Error> {
        let mut val = FpCtrl::from(0);
        val.set_key(true);
        val.set_enable(state);

        self.memory.write_word_32(FpCtrl::ADDRESS, val.into())?;
        self.memory.flush()?;

        self.state.hw_breakpoints_enabled = state;

        Ok(())
    }

    fn set_hw_breakpoint(&mut self, bp_unit_index: usize, addr: u64) -> Result<(), Error> {
        let addr = valid_32bit_address(addr)?;

        let mut val = FpCompN::from(0);

        // clear bits which cannot be set and shift into position
        let comp_val = (addr & 0xff_ff_ff_fe) >> 1;

        val.set_bp_addr(comp_val);
        val.set_enable(true);

        let reg_addr = FpCompN::ADDRESS + (bp_unit_index * size_of::<u32>()) as u64;

        self.memory.write_word_32(reg_addr, val.into())?;

        Ok(())
    }

    fn registers(&self) -> &'static RegisterFile {
        if self.state.fp_present {
            &CORTEX_M_WITH_FP_REGS
        } else {
            &CORTEX_M_COMMON_REGS
        }
    }

    fn clear_hw_breakpoint(&mut self, bp_unit_index: usize) -> Result<(), Error> {
        let mut val = FpCompN::from(0);
        val.set_enable(false);
        val.set_bp_addr(0);

        let reg_addr = FpCompN::ADDRESS + (bp_unit_index * size_of::<u32>()) as u64;

        self.memory.write_word_32(reg_addr, val.into())?;

        Ok(())
    }

    fn hw_breakpoints_enabled(&self) -> bool {
        self.state.hw_breakpoints_enabled
    }

    fn architecture(&self) -> Architecture {
        Architecture::Arm
    }

    fn core_type(&self) -> CoreType {
        CoreType::Armv8m
    }

    fn instruction_set(&mut self) -> Result<InstructionSet, Error> {
        Ok(InstructionSet::Thumb2)
    }

    fn status(&mut self) -> Result<crate::core::CoreStatus, Error> {
        let dhcsr = Dhcsr(self.memory.read_word_32(Dhcsr::ADDRESS)?);

        if dhcsr.s_lockup() {
            tracing::warn!(
                "The core is in locked up status as a result of an unrecoverable exception"
            );

            self.state.current_state = CoreStatus::LockedUp;

            return Ok(CoreStatus::LockedUp);
        }

        if dhcsr.s_sleep() {
            // Check if we assumed the core to be halted
            if self.state.current_state.is_halted() {
                tracing::warn!("Expected core to be halted, but core is running");
            }

            self.state.current_state = CoreStatus::Sleeping;

            return Ok(CoreStatus::Sleeping);
        }

        // TODO: Handle lockup

        if dhcsr.s_halt() {
            let dfsr = Dfsr(self.memory.read_word_32(Dfsr::ADDRESS)?);

            let reason = dfsr.halt_reason();

            // Clear bits from Dfsr register
            self.memory
                .write_word_32(Dfsr::ADDRESS, Dfsr::clear_all().into())?;

            // If the core was halted before, we cannot read the halt reason from the chip,
            // because we clear it directly after reading.
            if self.state.current_state.is_halted() {
                // There shouldn't be any bits set, otherwise it means
                // that the reason for the halt has changed. No bits set
                // means that we have an unkown HaltReason.
                if reason == HaltReason::Unknown {
                    tracing::debug!("Cached halt reason: {:?}", self.state.current_state);
                    return Ok(self.state.current_state);
                }

                tracing::debug!(
                    "Reason for halt has changed, old reason was {:?}, new reason is {:?}",
                    &self.state.current_state,
                    &reason
                );
            }

            self.state.current_state = CoreStatus::Halted(reason);

            return Ok(CoreStatus::Halted(reason));
        }

        // Core is neither halted nor sleeping, so we assume it is running.
        if self.state.current_state.is_halted() {
            tracing::warn!("Core is running, but we expected it to be halted");
        }

        self.state.current_state = CoreStatus::Running;

        Ok(CoreStatus::Running)
    }

    /// See docs on the [`CoreInterface::hw_breakpoints`] trait
    fn hw_breakpoints(&mut self) -> Result<Vec<Option<u64>>, Error> {
        let mut breakpoints = vec![];
        let num_hw_breakpoints = self.available_breakpoint_units()? as usize;
        for bp_unit_index in 0..num_hw_breakpoints {
            let reg_addr = FpCompN::ADDRESS + (bp_unit_index * size_of::<u32>()) as u64;
            // The raw breakpoint address as read from memory
            let register_value = self.memory.read_word_32(reg_addr)?;
            // The breakpoint address after it has been adjusted for FpRev 1 or 2
            if FpCompN::from(register_value).enable() {
                let breakpoint = FpCompN::from(register_value).bp_addr() << 1;
                breakpoints.push(Some(breakpoint as u64));
            } else {
                breakpoints.push(None);
            }
        }
        Ok(breakpoints)
    }

    fn fpu_support(&mut self) -> Result<bool, crate::error::Error> {
        Ok(self.state.fp_present)
    }
}

impl<'probe> MemoryInterface for Armv8m<'probe> {
    fn supports_native_64bit_access(&mut self) -> bool {
        self.memory.supports_native_64bit_access()
    }
    fn read_word_32(&mut self, address: u64) -> Result<u32, Error> {
        self.memory
            .read_word_32(address)
            .map_err(From::<ArmError>::from)
    }
    fn read_word_8(&mut self, address: u64) -> Result<u8, Error> {
        self.memory
            .read_word_8(address)
            .map_err(From::<ArmError>::from)
    }

    fn read_64(&mut self, address: u64, data: &mut [u64]) -> Result<(), crate::error::Error> {
        self.memory
            .read_64(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn read_32(&mut self, address: u64, data: &mut [u32]) -> Result<(), Error> {
        self.memory
            .read_32(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn read_8(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
        self.memory
            .read_8(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn read_word_64(&mut self, address: u64) -> Result<u64, crate::error::Error> {
        self.memory
            .read_word_64(address)
            .map_err(From::<ArmError>::from)
    }

    fn write_word_64(&mut self, address: u64, data: u64) -> Result<(), crate::error::Error> {
        self.memory
            .write_word_64(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn write_word_32(&mut self, address: u64, data: u32) -> Result<(), Error> {
        self.memory
            .write_word_32(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn write_word_8(&mut self, address: u64, data: u8) -> Result<(), Error> {
        self.memory
            .write_word_8(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn write_64(&mut self, address: u64, data: &[u64]) -> Result<(), crate::error::Error> {
        self.memory
            .write_64(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn write_32(&mut self, address: u64, data: &[u32]) -> Result<(), Error> {
        self.memory
            .write_32(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn write_8(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        self.memory
            .write_8(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn write(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        self.memory
            .write(address, data)
            .map_err(From::<ArmError>::from)
    }

    fn supports_8bit_transfers(&self) -> Result<bool, Error> {
        self.memory
            .supports_8bit_transfers()
            .map_err(From::<ArmError>::from)
    }

    fn flush(&mut self) -> Result<(), Error> {
        self.memory.flush().map_err(From::<ArmError>::from)
    }
}

/*
pub const REGISTERS: BasicRegisterAddresses = BasicRegisterAddresses {
    R0: CoreRegisterAddress(0b0_0000),
    R1: CoreRegisterAddress(0b0_0001),
    R2: CoreRegisterAddress(0b0_0010),
    R3: CoreRegisterAddress(0b0_0011),
    R4: CoreRegisterAddress(0b0_0100),
    R5: CoreRegisterAddress(0b0_0101),
    R6: CoreRegisterAddress(0b0_0110),
    R7: CoreRegisterAddress(0b0_0111),
    R8: CoreRegisterAddress(0b0_1000),
    R9: CoreRegisterAddress(0b0_1001),
    PC: CoreRegisterAddress(0b0_1111),
    SP: CoreRegisterAddress(0b0_1101),
    LR: CoreRegisterAddress(0b0_1110),
    XPSR: CoreRegisterAddress(0b1_0000),
};
*/

bitfield! {
    /// Debug Halting Control and Status Register, DHCSR (see armv8-M Architecture Reference Manual D1.2.38)
    ///
    /// To write this register successfully, you need to set the debug key via [`Dhcsr::enable_write`] first!
    #[derive(Copy, Clone)]
    pub struct Dhcsr(u32);
    impl Debug;
    /// Restart sticky status. Indicates the PE has processed a request to clear DHCSR.C_HALT to 0. That is, either
    /// a write to DHCSR that clears DHCSR.C_HALT from 1 to 0, or an External Restart Request.
    ///
    /// The possible values of this bit are:
    ///
    /// `0`: PE has not left Debug state since the last read of DHCSR.\
    /// `1`: PE has left Debug state since the last read of DHCSR.
    ///
    /// If the PE is not halted when `C_HALT` is cleared to zero, it is UNPREDICTABLE whether this bit is set to `1`. If
    /// `DHCSR.C_DEBUGEN == 0` this bit reads as an UNKNOWN value.
    ///
    /// This bit clears to zero when read.
    ///
    /// **Note**
    ///
    /// If the request to clear C_HALT is made simultaneously with a request to set C_HALT, for example
    /// a restart request and external debug request occur together, then the
    pub s_restart_st, _ : 26;
    ///  Indicates whether the processor has been reset since the last read of DHCSR:
    ///
    /// `0`: No reset since last DHCSR read.\
    /// `1`: At least one reset since last DHCSR read.
    ///
    /// This is a sticky bit, that clears to `0` on a read of DHCSR.
    pub s_reset_st, _: 25;
    /// When not in Debug state, indicates whether the processor has completed
    /// the execution of an instruction since the last read of DHCSR:
    ///
    /// `0`: No instruction has completed since last DHCSR read.\
    /// `1`: At least one instructions has completed since last DHCSR read.
    ///
    /// This is a sticky bit, that clears to `0` on a read of DHCSR.
    ///
    /// This bit is UNKNOWN:
    ///
    /// - after a Local reset, but is set to `1` as soon as the processor completes
    /// execution of an instruction.
    /// - when S_LOCKUP is set to `1`.
    /// - when S_HALT is set to `1`.
    ///
    /// When the processor is not in Debug state, a debugger can check this bit to
    /// determine if the processor is stalled on a load, store or fetch access.
    pub s_retire_st, _: 24;
    /// Floating-point registers Debuggable.
    /// Indicates that FPSCR, VPR, and the Floating-point registers are RAZ/WI in the current PE state when accessed via DCRSR. This reflects !CanDebugAccessFP().
    /// The possible values of this bit are:
    ///
    /// `0`: Floating-point registers accessible.\
    /// `1`: Floating-point registers are RAZ/WI.
    ///
    /// If version Armv8.1-M of the architecture is not implemented, this bit is RES0
    pub s_fpd, _: 23;
    /// Secure unprivileged halting debug enabled. Indicates whether Secure unprivileged-only halting debug is allowed or active.
    /// The possible values of this bit are:
    ///
    /// `0`: Secure invasive halting debug prohibited or not restricted to an unprivileged mode.\
    /// `1`: Unprivileged Secure invasive halting debug enabled.
    ///
    /// If the PE is in Non-debug state, this bit reflects the value of `UnprivHaltingDebugAllowed(TRUE) && !SecureHaltingDebugAllowed()`.
    ///
    /// The value of this bit does not change whilst the PE remains in Debug state.
    ///
    /// If the Security Extension is not implemented, this bit is RES0.
    /// If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.
    pub s_suide, _: 22;
    /// Non-secure unprivileged halting debug enabled. Indicates whether Non-secure unprivileged-only halting debug is allowed or active.
    ///
    /// The possible values of this bit are:
    ///
    /// `0`: Non-secure invasive halting debug prohibited or not restricted to an unprivileged mode.\
    /// `1`: Unprivileged Non-secure invasive halting debug enabled.
    ///
    /// If the PE is in Non-debug state, this bit reflects the value of `UnprivHaltingDebugAllowed(FALSE) &&
    /// !HaltingDebugAllowed()`.
    ///
    /// The value of this bit does not change whilst the PE remains in Debug state.
    /// If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0
    pub s_nsuide, _: 21;
    /// Secure debug enabled. Indicates whether Secure invasive debug is allowed.
    /// The possible values of this bit are:
    ///
    /// `0`: Secure invasive debug prohibited.\
    /// `1`: Secure invasive debug allowed.
    ///
    /// If the PE is in Non-debug state, this bit reflects the value of SecureHaltingDebugAllowed() or UnprivHaltingDebugAllowed(TRUE).
    ///
    /// The value of this bit does not change while the PE remains in Debug state.
    ///
    /// If the Security Extension is not implemented, this bit is RES0.
    pub s_sde, _: 20;
    /// Indicates whether the processor is locked up because of an unrecoverable
    /// exception:
    ///
    /// `0` Not locked up.\
    /// `1` Locked up.
    /// See Unrecoverable exception cases on page B1-206 for more
    /// information.
    ///
    /// This bit can only read as `1` when accessed by a remote debugger using the
    /// DAP. The value of `1` indicates that the processor is running but locked up.
    /// The bit clears to `0` when the processor enters Debug state.
    pub s_lockup, _: 19;
    /// Indicates whether the processor is sleeping:
    ///
    /// `0` Not sleeping.
    /// `1` Sleeping.
    ///
    /// The debugger must set the DHCSR.C_HALT bit to `1` to gain control, or
    /// wait for an interrupt or other wakeup event to wakeup the system
    pub s_sleep, _: 18;
    /// Indicates whether the processor is in Debug state:
    ///
    /// `0`: Not in Debug state.\
    /// `1`: In Debug state.
    pub s_halt, _: 17;
    /// A handshake flag for transfers through the DCRDR:
    ///
    /// - Writing to DCRSR clears the bit to `0`.\
    /// - Completion of the DCRDR transfer then sets the bit to `1`.
    ///
    /// For more information about DCRDR transfers see Debug Core Register
    /// Data Register, DCRDR on page C1-292.
    ///
    /// `0`: There has been a write to the DCRDR, but the transfer is not complete.\
    /// `1` The transfer to or from the DCRDR is complete.
    ///
    /// This bit is only valid when the processor is in Debug state, otherwise the
    /// bit is UNKNOWN.
    pub s_regrdy, _: 16;
    /// Halt on PMU overflow control. Request entry to Debug state when a PMU counter overflows.
    ///
    /// The possible values of this bit are:
    ///
    /// `0`: No action.\
    /// `1`: If C_DEBUGEN is set to `1`, then when a PMU counter is configured to generate an interrupt overflows,
    /// the PE sets DHCSR.C_HALT to `1` and DFSR.PMU to `1`.
    ///
    /// PMU_OVSSET and PMU_OVSCLR indicate which counter or counters triggered the halt.
    ///
    /// If the Main Extension is not implemented, this bit is RES0.
    ///
    /// If version Armv8.1 of the architecture and PMU are not implemented, this bit is RES0.
    ///
    /// This bit resets to zero on a Cold reset.
    pub c_pmov, set_c_pmov: 6;
    /// Allow imprecise entry to Debug state. The actions on writing to this bit are:
    ///
    /// `0`: No action.\
    /// `1`: Allow imprecise entry to Debug state, for example by forcing any stalled load
    /// or store instruction to complete.
    ///
    /// Setting this bit to `1` allows a debugger to request imprecise entry to Debug state.
    ///
    /// The effect of setting this bit to `1` is UNPREDICTABLE unless the DHCSR write also sets
    /// C_DEBUGEN and C_HALT to `1`. This means that if the processor is not already in Debug
    /// state it enters Debug state when the stalled instruction completes.
    ///
    /// Writing `1` to this bit makes the state of the memory system UNPREDICTABLE. Therefore, if a
    /// debugger writes `1` to this bit it must reset the processor before leaving Debug state.
    ///
    /// **Note**
    ///
    /// - A debugger can write to the DHCSR to clear this bit to `0`. However, this does not
    /// remove the UNPREDICTABLE state of the memory system caused by setting C_SNAPSTALL to `1`.
    /// - The architecture does not guarantee that setting this bit to 1 will force entry to Debug
    /// state.
    /// - Arm strongly recommends that a value of `1` is never written to C_SNAPSTALL when
    /// the processor is in Debug state.
    ///
    /// A power-on reset sets this bit to `0`.
    pub c_snapstall, set_c_snapstall: 5;
    /// When debug is enabled, the debugger can write to this bit to mask
    /// PendSV, SysTick and external configurable interrupts:
    ///
    /// `0`: Do not mask.\
    /// `1` Mask PendSV, SysTick and external configurable interrupts.
    /// The effect of any attempt to change the value of this bit is UNPREDICTABLE
    /// unless both:
    /// - before the write to DHCSR, the value of the C_HALT bit is `1`.
    /// - the write to the DHCSR that changes the C_MASKINTS bit also
    /// writes `1` to the C_HALT bit.
    ///
    /// This means that a single write to DHCSR cannot set the C_HALT to `0` and
    /// change the value of the C_MASKINTS bit.
    ///
    /// The bit does not affect NMI. When DHCSR.C_DEBUGEN is set to `0`, the
    /// value of this bit is UNKNOWN.
    ///
    /// For more information about the use of this bit see Table C1-9 on
    /// page C1-282.
    ///
    /// This bit is UNKNOWN after a power-on reset.
    pub c_maskints, set_c_maskints: 3;
    /// Processor step bit. The effects of writes to this bit are:
    ///
    /// `0`: Single-stepping disabled.\
    /// `1`: Single-stepping enabled.
    ///
    /// For more information about the use of this bit see Table C1-9 on page C1-282.
    ///
    /// This bit is UNKNOWN after a power-on reset.
    pub c_step, set_c_step: 2;
    /// Processor halt bit. The effects of writes to this bit are:
    ///
    /// `0`: Request a halted processor to run.\
    /// `1`: Request a running processor to halt.
    ///
    /// Table C1-9 on page C1-282 shows the effect of writes to this bit when the
    /// processor is in Debug state.
    ///
    /// This bit is 0 after a System reset
    pub c_halt, set_c_halt: 1;
    /// Halting debug enable bit:
    /// `0`: Halting debug disabled.\
    /// `1`: Halting debug enabled.
    ///
    /// If a debugger writes to DHCSR to change the value of this bit from `0` to
    /// `1`, it must also write 0 to the C_MASKINTS bit, otherwise behavior is UNPREDICTABLE.
    ///
    /// This bit can only be written from the DAP. Access to the DHCSR from
    /// software running on the processor is IMPLEMENTATION DEFINED.
    ///
    /// However, writes to this bit from software running on the processor are ignored.
    ///
    /// This bit is `0` after a power-on reset.
    pub c_debugen, set_c_debugen: 0;
}

impl Dhcsr {
    /// This function sets the bit to enable writes to this register.
    fn enable_write(&mut self) {
        self.0 &= !(0xffff << 16);
        self.0 |= 0xa05f << 16;
    }
}

impl From<u32> for Dhcsr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dhcsr> for u32 {
    fn from(value: Dhcsr) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for Dhcsr {
    const ADDRESS: u64 = 0xE000_EDF0;
    const NAME: &'static str = "DHCSR";
}

bitfield! {
    /// Application Interrupt and Reset Control Register, AIRCR (see armv8-M Architecture Reference Manual D1.2.3)
    ///
    /// [`Aircr::vectkey`] must be called before this register can effectively be written!
    #[derive(Copy, Clone)]
    pub struct Aircr(u32);
    impl Debug;
    /// Vector Key. The value `0x05FA` must be written to this register, otherwise
    /// the register write is UNPREDICTABLE.
    get_vectkeystat, set_vectkey: 31,16;
    /// Indicates the memory system data endianness:
    ///
    /// `0`: little endian.\
    /// `1` big endian.
    ///
    /// See Endian support on page A3-44 for more information.
    pub endianness, set_endianness: 15;
    /// Priority grouping, indicates the binary point position.
    /// For information about the use of this field see Priority grouping on page B1-527.
    ///
    /// This field resets to `0b000`.
    pub prigroup, set_prigroup: 10,8;
    /// System reset request Secure only. The value of this bit defines whether the SYSRESETREQ bit is functional for Non-secure use.
    /// This bit is not banked between Security states.
    /// The possible values of this bit are:
    ///
    /// `0`: SYSRESETREQ functionality is available to both Security states.\
    /// `1`: SYSRESETREQ functionality is only available to Secure state.
    ///
    /// This bit is RAZ/WI from Non-secure state.
    /// This bit resets to zero on a Warm reset
    pub sysresetreqs, set_sysresetreqs: 3;
    ///  System Reset Request:
    ///
    /// `0` do not request a reset.\
    /// `1` request reset.
    ///
    /// Writing 1 to this bit asserts a signal to request a reset by the external
    /// system. The system components that are reset by this request are
    /// IMPLEMENTATION DEFINED. A Local reset is required as part of a system
    /// reset request.
    ///
    /// A Local reset clears this bit to `0`.
    ///
    /// See Reset management on page B1-208 for more information
    pub sysresetreq, set_sysresetreq: 2;
    /// Clears all active state information for fixed and configurable exceptions:
    ///
    /// `0`: do not clear state information.\
    /// `1`: clear state information.
    ///
    /// The effect of writing a `1` to this bit if the processor is not halted in Debug
    /// state is UNPREDICTABLE.
    pub vectclractive, set_vectclractive: 1;
    /// Writing `1` to this bit causes a local system reset, see Reset management on page B1-559 for
    /// more information. This bit self-clears.
    ///
    /// The effect of writing a `1` to this bit if the processor is not halted in Debug state is
    /// UNPREDICTABLE.
    ///
    /// When the processor is halted in Debug state, if a write to the register writes a `1` to both
    /// VECTRESET and SYSRESETREQ, the behavior is UNPREDICTABLE.
    ///
    /// This bit is write only.
    pub vectreset, set_vectreset: 0;
}

impl From<u32> for Aircr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Aircr> for u32 {
    fn from(value: Aircr) -> Self {
        value.0
    }
}

impl Aircr {
    /// Must be called before writing the register.
    pub fn vectkey(&mut self) {
        self.set_vectkey(0x05FA);
    }

    /// Verifies that the vector key is correct (see [`Aircr::vectkey`])
    pub fn vectkeystat(&self) -> bool {
        self.get_vectkeystat() == 0xFA05
    }
}

impl MemoryMappedRegister for Aircr {
    const ADDRESS: u64 = 0xE000_ED0C;
    const NAME: &'static str = "AIRCR";
}

/// Debug Core Register Data Register, DCRDR (see armv8-M Architecture Reference Manual D1.2.32)
#[derive(Debug, Copy, Clone)]
pub struct Dcrdr(u32);

impl From<u32> for Dcrdr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dcrdr> for u32 {
    fn from(value: Dcrdr) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for Dcrdr {
    const ADDRESS: u64 = 0xE000_EDF8;
    const NAME: &'static str = "DCRDR";
}

bitfield! {
    /// /// Debug Exception and Monitor Control Register, DEMCR (see armv8-M Architecture Reference Manual D1.2.36)
    #[derive(Copy, Clone)]
    pub struct Demcr(u32);
    impl Debug;
    /// Global enable for DWT, PMU and ITM features
    pub trcena, set_trcena: 24;
    /// Monitor pending request key. Writes to the mon_pend and mon_en fields
    /// request are ignorend unless monprkey is set to zero concurrently.
    pub monprkey, set_monprkey: 23;
    /// Unprivileged monitor enable.
    pub umon_en, set_umon_en: 21;
    /// Secure DebugMonitor enable
    pub sdme, set_sdme: 20;
    /// DebugMonitor semaphore bit
    pub mon_req, set_mon_req: 19;
    /// Step the processor?
    pub mon_step, set_mon_step: 18;
    /// Sets or clears the pending state of the DebugMonitor exception
    pub mon_pend, set_mon_pend: 17;
    /// Enable the DebugMonitor exception
    pub mon_en, set_mon_en: 16;
    /// Enable halting debug on a SecureFault exception
    pub vc_sferr, set_vc_sferr: 11;
    /// Enable halting debug trap on a HardFault exception
    pub vc_harderr, set_vc_harderr: 10;
    /// Enable halting debug trap on a fault occurring during exception entry
    /// or exception return
    pub vc_interr, set_vc_interr: 9;
    /// Enable halting debug trap on a BusFault exception
    pub vc_buserr, set_vc_buserr: 8;
    /// Enable halting debug trap on a UsageFault exception caused by a state
    /// information error, for example an Undefined Instruction exception
    pub vc_staterr, set_vc_staterr: 7;
    /// Enable halting debug trap on a UsageFault exception caused by a
    /// checking error, for example an alignment check error
    pub vc_chkerr, set_vc_chkerr: 6;
    /// Enable halting debug trap on a UsageFault caused by an access to a
    /// Coprocessor
    pub vc_nocperr, set_vc_nocperr: 5;
    /// Enable halting debug trap on a MemManage exception.
    pub vc_mmerr, set_vc_mmerr: 4;
    /// Enable Reset Vector Catch
    pub vc_corereset, set_vc_corereset: 0;
}

impl From<u32> for Demcr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Demcr> for u32 {
    fn from(value: Demcr) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for Demcr {
    const ADDRESS: u64 = 0xe000_edfc;
    const NAME: &'static str = "DEMCR";
}

bitfield! {
    /// Flash Patch Control Register, FP_CTRL (see armv8-M Architecture Reference Manual D1.2.108)
    #[derive(Copy,Clone)]
    pub struct FpCtrl(u32);
    impl Debug;
    /// Flash Patch breakpoint architecture revision:
    /// 0000 Flash Patch breakpoint version 1.
    /// 0001 Flash Patch breakpoint version 2. Supports breakpoints on any location in the 4GB address range.
    pub rev, _: 31, 28;
    num_code_1, _: 14, 12;
    /// The number of literal address comparators supported, starting from NUM_CODE upwards.
    /// UNK/SBZP if Flash Patch is not implemented. Flash Patch is not implemented if FP_REMAP[29] is 0.
    /// If this field is zero, the implementation does not support literal comparators.
    pub num_lit, _: 11, 8;
    num_code_0, _: 7, 4;
    /// On any write to FP_CTRL, this bit must be 1. A write to the register with this bit set to zero
    /// is ignored. The Flash Patch Breakpoint unit ignores the write unless this bit is 1.
    pub _, set_key: 1;
    /// Enable bit for the FPB:
    /// 0 Flash Patch breakpoint disabled.
    /// 1 Flash Patch breakpoint enabled.
    /// A power-on reset clears this bit to 0.
    pub enable, set_enable: 0;
}

impl FpCtrl {
    /// The number of instruction address comparators.
    /// If NUM_CODE is zero, the implementation does not support any instruction address comparators.
    pub fn num_code(&self) -> u32 {
        (self.num_code_1() << 4) | self.num_code_0()
    }
}

impl MemoryMappedRegister for FpCtrl {
    const ADDRESS: u64 = 0xE000_2000;
    const NAME: &'static str = "FP_CTRL";
}

impl From<u32> for FpCtrl {
    fn from(value: u32) -> Self {
        FpCtrl(value)
    }
}

impl From<FpCtrl> for u32 {
    fn from(value: FpCtrl) -> Self {
        value.0
    }
}

bitfield! {
    /// FP_COMPn, Flash Patch Comparator Register, n = 0 - 125 (see armv8-M Architecture Reference Manual D1.2.107)
    #[derive(Copy,Clone)]
    pub struct FpCompN(u32);
    impl Debug;
    /// BPADDR, bits[31:1] Breakpoint address. Specifies bits[31:1] of the breakpoint instruction address.
    /// If BE == 0, this field is Reserved, UNK/SBZP.
    /// The reset value of this field is UNKNOWN.
    pub bp_addr, set_bp_addr: 31, 1;
    /// Enable bit for breakpoint:
    /// 0 Breakpoint disabled.
    /// 1 Breakpoint enabled.
    /// The reset value of this bit is UNKNOWN.
    pub enable, set_enable: 0;
}

impl MemoryMappedRegister for FpCompN {
    const ADDRESS: u64 = 0xE000_2008;
    const NAME: &'static str = "FP_COMPn";
}

impl From<u32> for FpCompN {
    fn from(value: u32) -> Self {
        FpCompN(value)
    }
}

impl From<FpCompN> for u32 {
    fn from(value: FpCompN) -> Self {
        value.0
    }
}