1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//! Register types and the core interface for armv6-M

use super::{CortexMState, Dfsr, CORTEX_M_COMMON_REGS};

use crate::architecture::arm::memory::adi_v5_memory_interface::ArmProbe;
use crate::architecture::arm::sequences::ArmDebugSequence;
use crate::architecture::arm::ArmError;
use crate::core::{
    RegisterDataType, RegisterDescription, RegisterFile, RegisterKind, RegisterValue,
};
use crate::error::Error;
use crate::memory::valid_32bit_address;
use crate::{
    Architecture, CoreInformation, CoreInterface, CoreStatus, CoreType, DebugProbeError,
    HaltReason, InstructionSet, MemoryInterface, MemoryMappedRegister, RegisterId,
};
use anyhow::Result;
use bitfield::bitfield;
use std::sync::Arc;
use std::{
    mem::size_of,
    time::{Duration, Instant},
};

bitfield! {
    /// Debug Halting Control and Status Register, DHCSR (see armv6-M Architecture Reference Manual C1.6.3)
    ///
    /// To write this register successfully, you need to set the debug key via [`Dhcsr::enable_write`] first!
    #[derive(Copy, Clone)]
    pub struct Dhcsr(u32);
    impl Debug;
    /// Indicates whether the processor has been reset since the last read of DHCSR:
    ///
    /// `0`: No reset since last DHCSR read.
    /// `1`: At least one reset since last DHCSR read.
    ///
    /// This is a sticky bit, that clears to `0` on a read of DHCSR.
    pub s_reset_st, _: 25;
    /// When not in Debug state, indicates whether the processor has completed
    /// the execution of an instruction since the last read of DHCSR:
    ///
    /// `0`: No instruction has completed since last DHCSR read.
    /// `1`: At least one instructions has completed since last DHCSR read.
    ///
    /// This is a sticky bit, that clears to `0` on a read of DHCSR.
    ///
    /// This bit is UNKNOWN:
    ///
    /// - after a Local reset, but is set to `1` as soon as the processor completes
    /// execution of an instruction.
    /// - when S_LOCKUP is set to 1.
    /// - when S_HALT is set to 1.
    ///
    /// When the processor is not in Debug state, a debugger can check this bit to
    /// determine if the processor is stalled on a load, store or fetch access.
    pub s_retire_st, _: 24;
    /// Indicates whether the processor is locked up because of an unrecoverable exception:
    ///
    /// `0`: Not locked up.\
    /// `1`: Locked up.
    ///
    /// See Unrecoverable exception cases on page B1-206 for more information.
    ///
    /// This bit can only read as `1` when accessed by a remote debugger using the
    /// DAP. The value of `1` indicates that the processor is running but locked up.
    ///
    /// The bit clears to `0` when the processor enters Debug state.
    pub s_lockup, _: 19;
    /// Indicates whether the processor is sleeping:
    ///
    /// `0`: Not sleeping.\
    /// `1`: Sleeping.
    ///
    /// The debugger must set the DHCSR.C_HALT bit to `1` to gain control, or
    /// wait for an interrupt or other wakeup event to wakeup the system
    pub s_sleep, _: 18;
    /// Indicates whether the processor is in Debug state:
    ///
    /// `0`: Not in Debug state.\
    /// `1`: In Debug state.
    pub s_halt, _: 17;
    /// A handshake flag for transfers through the DCRDR:
    ///
    /// - Writing to DCRSR clears the bit to `0`.
    /// - Completion of the DCRDR transfer then sets the bit to `1`.
    ///
    /// For more information about DCRDR transfers see Debug Core Register
    /// Data Register, DCRDR on page C1-292.
    ///
    /// `0`: There has been a write to the DCRDR, but the transfer is
    /// not complete.\
    /// `1`: The transfer to or from the DCRDR is complete.
    ///
    /// This bit is only valid when the processor is in Debug state, otherwise the
    /// bit is UNKNOWN.
    pub s_regrdy, _: 16;
    /// When debug is enabled, the debugger can write to this bit to mask
    /// PendSV, SysTick and external configurable interrupts:
    ///
    /// `0`: Do not mask.\
    /// `1`: Mask PendSV, SysTick and external configurable interrupts.
    ///
    /// The effect of any attempt to change the value of this bit is UNPREDICTABLE
    /// unless both:
    ///
    /// - before the write to DHCSR, the value of the C_HALT bit is 1.
    /// - the write to the DHCSR that changes the C_MASKINTS bit also
    /// writes `1` to the C_HALT bit.
    ///
    /// This means that a single write to DHCSR cannot set the C_HALT to `0` and
    /// change the value of the C_MASKINTS bit.
    ///
    /// The bit does not affect NMI. When DHCSR.C_DEBUGEN is set to `0`, the
    /// value of this bit is UNKNOWN.
    ///
    /// For more information about the use of this bit see Table C1-9 on page C1-282.
    ///
    /// This bit is UNKNOWN after a power-on reset.
    pub c_maskints, set_c_maskints: 3;
    /// Processor step bit. The effects of writes to this bit are:
    ///
    /// `0`: Single-stepping disabled.\
    /// `1`: Single-stepping enabled.
    ///
    /// For more information about the use of this bit see Table C1-9 on
    /// page C1-282.
    ///
    /// This bit is UNKNOWN after a power-on reset.
    pub c_step, set_c_step: 2;
    /// Processor halt bit. The effects of writes to this bit are:
    ///
    /// `0`: Request a halted processor to run.\
    /// `1`: Request a running processor to halt.
    ///
    /// Table C1-9 on page C1-282 shows the effect of writes to this bit when the
    /// processor is in Debug state.
    ///
    /// This bit is `0` after a System reset.
    pub c_halt, set_c_halt: 1;
    ///  Halting debug enable bit:
    ///
    /// `0`: Halting debug disabled.\
    /// `1`: Halting debug enabled.
    ///
    /// If a debugger writes to DHCSR to change the value of this bit from `0` to
    /// 1, it must also write `0` to the C_MASKINTS bit, otherwise behavior is UNPREDICTABLE.
    ///
    /// This bit can only be written from the DAP. Access to the DHCSR from
    /// software running on the processor is IMPLEMENTATION DEFINED.
    /// However, writes to this bit from software running on the processor are ignored.
    ///
    /// This bit is `0` after a power-on reset.
    pub c_debugen, set_c_debugen: 0;
}

impl Dhcsr {
    /// This function sets the bit to enable writes to this register.
    pub fn enable_write(&mut self) {
        self.0 &= !(0xffff << 16);
        self.0 |= 0xa05f << 16;
    }
}

impl From<u32> for Dhcsr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dhcsr> for u32 {
    fn from(value: Dhcsr) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for Dhcsr {
    const ADDRESS: u64 = 0xE000_EDF0;
    const NAME: &'static str = "DHCSR";
}

/// Debug Core Register Data Register, DCRDR (see armv6-M Architecture Reference Manual C1.6.5)
#[derive(Debug, Copy, Clone)]
pub struct Dcrdr(u32);

impl From<u32> for Dcrdr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dcrdr> for u32 {
    fn from(value: Dcrdr) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for Dcrdr {
    const ADDRESS: u64 = 0xE000_EDF8;
    const NAME: &'static str = "DCRDR";
}

bitfield! {
    /// Breakpoint Control register, BP_CTRL (see armv6-M Architecture Reference Manual  C1.8.2)
    ///
    /// Provides BPU implementation information, and the global enable for the BPU.
    #[derive(Copy, Clone)]
    pub struct BpCtrl(u32);
    impl Debug;
    /// The number of breakpoint comparators. If NUM_CODE is zero, the implementation does not support any comparators
    pub num_code, _: 7, 4;
    /// RAZ on reads, SBO, for writes. If written as zero, the write to the register is ignored.
    pub key, set_key: 1;
    /// Enables the BPU:
    ///
    /// `0`: BPU is disabled.\
    /// `1`: BPU is enabled.
    ///
    /// This bit is set to `0` on a power-on reset
    pub _, set_enable: 0;
}

impl From<u32> for BpCtrl {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<BpCtrl> for u32 {
    fn from(value: BpCtrl) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for BpCtrl {
    const ADDRESS: u64 = 0xE000_2000;
    const NAME: &'static str = "BP_CTRL";
}

bitfield! {
    /// Breakpoint Comparator registers, BP_COMPx (see armv6-M Architecture Reference Manual  C1.8.2)
    ///
    /// Holds a breakpoint address for comparison with instruction addresses in the Code memory
    /// region, see The system address map on page B3-224 for more information.
    #[derive(Copy, Clone)]
    pub struct BpCompx(u32);
    impl Debug;
    /// BP_MATCH defines the behavior when the COMP address is matched:
    ///
    /// - `00` no breakpoint matching.
    /// - `01` breakpoint on lower halfword, upper is unaffected.
    /// - `10` breakpoint on upper halfword, lower is unaffected.
    /// - `11` breakpoint on both lower and upper halfwords.
    /// - The field is UNKNOWN on reset.
    pub bp_match, set_bp_match: 31,30;
    /// Stores bits [28:2] of the comparison address. The comparison address is
    /// compared with the address from the Code memory region. Bits [31:29] and
    /// [1:0] of the comparison address are zero.
    ///
    /// The field is UNKNOWN on power-on reset.
    pub comp, set_comp: 28,2;
    /// Enables the comparator:
    ///
    /// `0`: comparator is disabled.\
    /// `1`: comparator is enabled.
    ///
    /// This bit is set to `0` on a power-on reset.
    pub enable, set_enable: 0;
}

impl From<u32> for BpCompx {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<BpCompx> for u32 {
    fn from(value: BpCompx) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for BpCompx {
    const ADDRESS: u64 = 0xE000_2008;
    const NAME: &'static str = "BP_CTRL0";
}

impl BpCompx {
    /// Get the correct comparator value stored at the given address.
    ///
    /// This will adjust the [`BpCompx::comp`] result based on the `BpCompx.bp_match()` specification
    ///
    /// NOTE: Does not support a bp_match value of `11`
    fn get_breakpoint_comparator(register_value: u32) -> Result<u32, Error> {
        let bp_val = BpCompx::from(register_value);
        if bp_val.bp_match() == 0b01 {
            Ok(bp_val.comp() << 2)
        } else if bp_val.bp_match() == 0b10 {
            Ok((bp_val.comp() << 2) | 0x2)
        } else {
            Err(Error::Probe(DebugProbeError::Other(anyhow::anyhow!("Unsupported breakpoint comparator value {:#08x} for HW breakpoint. Breakpoint must be on half-word boundaries", bp_val.0))))
        }
    }
}

bitfield! {
    /// Application Interrupt and Reset Control Register, AIRCR (see armv6-M Architecture Reference Manual B3.2.6)
    ///
    /// [`Aircr::vectkey`] must be called before this register can effectively be written!
    #[derive(Copy, Clone)]
    pub struct Aircr(u32);
    impl Debug;
    /// Vector Key. The value 0x05FA must be written to this register, otherwise
    /// the register write is UNPREDICTABLE.
    get_vectkeystat, set_vectkey: 31,16;
    /// Indicates the memory system data endianness:
    ///
    /// `0`: little endian.\
    /// `1`: big endian.
    ///
    /// See Endian support on page A3-44 for more information.
    pub endianness, set_endianness: 15;
    ///  System Reset Request:
    ///
    /// `0`: do not request a reset.\
    /// `1`: request reset.
    ///
    /// Writing `1` to this bit asserts a signal to request a reset by the external
    /// system. The system components that are reset by this request are
    /// IMPLEMENTATION DEFINED. A Local reset is required as part of a system
    /// reset request.
    ///
    /// A Local reset clears this bit to `0`.
    ///
    /// See Reset management on page B1-208 for more information
    pub sysresetreq, set_sysresetreq: 2;
    /// Clears all active state information for fixed and configurable exceptions:
    ///
    /// `0`: do not clear state information.\
    /// `1`: clear state information.
    ///
    /// The effect of writing a `1` to this bit if the processor is not halted in Debug
    /// state is UNPREDICTABLE.
    pub vectclractive, set_vectclractive: 1;
}

impl From<u32> for Aircr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Aircr> for u32 {
    fn from(value: Aircr) -> Self {
        value.0
    }
}

impl Aircr {
    /// Must be called before writing the register.
    pub fn vectkey(&mut self) {
        self.set_vectkey(0x05FA);
    }

    /// Verifies that the vector key is correct (see [`Aircr::vectkey`])
    pub fn vectkeystat(&self) -> bool {
        self.get_vectkeystat() == 0xFA05
    }
}

impl MemoryMappedRegister for Aircr {
    const ADDRESS: u64 = 0xE000_ED0C;
    const NAME: &'static str = "AIRCR";
}

bitfield! {
    /// Debug Exception and Monitor Control Register, DEMCR (see armv6-M Architecture Reference Manual C1.6.6)
    #[derive(Copy, Clone)]
    pub struct Demcr(u32);
    impl Debug;
    /// Global enable for DWT.
    ///
    /// Enables:
    /// - Data Watchpoint and Trace (DWT)
    /// - Instrumentation Trace Macrocell (ITM)
    /// - Embedded Trace Macrocell (ETM)
    /// - Trace Port Interface Unit (TPIU).
    pub dwtena, set_dwtena: 24;
    /// Enable halting debug trap on a HardFault exception
    pub vc_harderr, set_vc_harderr: 10;
    /// Enable Reset Vector Catch
    pub vc_corereset, set_vc_corereset: 0;
}

impl From<u32> for Demcr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Demcr> for u32 {
    fn from(value: Demcr) -> Self {
        value.0
    }
}

impl MemoryMappedRegister for Demcr {
    const ADDRESS: u64 = 0xe000_edfc;
    const NAME: &'static str = "DEMCR";
}

/*
const REGISTERS: RegisterFile = RegisterFile {
    registers:
    R0: CoreRegisterAddress(0b0_0000),
    R1: CoreRegisterAddress(0b0_0001),
    R2: CoreRegisterAddress(0b0_0010),
    R3: CoreRegisterAddress(0b0_0011),
    R4: CoreRegisterAddress(0b0_0100),
    R5: CoreRegisterAddress(0b0_0101),
    R6: CoreRegisterAddress(0b0_0110),
    R7: CoreRegisterAddress(0b0_0111),
    R8: CoreRegisterAddress(0b0_1000),
    R9: CoreRegisterAddress(0b0_1001),
    PC: CoreRegisterAddress(0b0_1111),
    SP: CoreRegisterAddress(0b0_1101),
    LR: CoreRegisterAddress(0b0_1110),
    XPSR: CoreRegisterAddress(0b1_0000),
};
*/

/// The Main Stack Pointer
pub const MSP: RegisterId = RegisterId(0b01001);
/// The Process Stack Pointer ([only used with OSes](See ARMv6-M architecture manual B1.4.1 (The SP registers))
pub const PSP: RegisterId = RegisterId(0b01010);

const PC: RegisterDescription = RegisterDescription {
    name: "PC",
    _kind: RegisterKind::PC,
    id: RegisterId(0b0_1111),
    _type: RegisterDataType::UnsignedInteger,
    size_in_bits: 32,
};

const XPSR: RegisterDescription = RegisterDescription {
    name: "XPSR",
    _kind: RegisterKind::General,
    id: RegisterId(0b1_0000),
    _type: RegisterDataType::UnsignedInteger,
    size_in_bits: 32,
};

/// The state of a core that can be used to persist core state across calls to multiple different cores.
pub(crate) struct Armv6m<'probe> {
    memory: Box<dyn ArmProbe + 'probe>,

    state: &'probe mut CortexMState,

    sequence: Arc<dyn ArmDebugSequence>,
}

impl<'probe> Armv6m<'probe> {
    pub(crate) fn new(
        mut memory: Box<dyn ArmProbe + 'probe>,
        state: &'probe mut CortexMState,
        sequence: Arc<dyn ArmDebugSequence>,
    ) -> Result<Self, ArmError> {
        if !state.initialized() {
            // determine current state
            let dhcsr = Dhcsr(memory.read_word_32(Dhcsr::ADDRESS)?);

            let core_state = if dhcsr.s_sleep() {
                CoreStatus::Sleeping
            } else if dhcsr.s_halt() {
                let dfsr = Dfsr(memory.read_word_32(Dfsr::ADDRESS)?);

                let reason = dfsr.halt_reason();

                tracing::debug!("Core was halted when connecting, reason: {:?}", reason);

                CoreStatus::Halted(reason)
            } else {
                CoreStatus::Running
            };

            // Clear DFSR register. The bits in the register are sticky,
            // so we clear them here to ensure that that none are set.
            let dfsr_clear = Dfsr::clear_all();

            memory.write_word_32(Dfsr::ADDRESS, dfsr_clear.into())?;

            state.current_state = core_state;
            state.initialize();
        }

        Ok(Self {
            memory,
            state,
            sequence,
        })
    }
}

impl<'probe> CoreInterface for Armv6m<'probe> {
    fn wait_for_core_halted(&mut self, timeout: Duration) -> Result<(), Error> {
        // Wait until halted state is active again.
        let start = Instant::now();

        while start.elapsed() < timeout {
            if self.core_halted()? {
                return Ok(());
            }
            std::thread::sleep(Duration::from_millis(1));
        }
        Err(Error::Arm(ArmError::Timeout))
    }

    fn core_halted(&mut self) -> Result<bool, Error> {
        // Wait until halted state is active again.
        //
        // By calling the status function, the cached
        // status is properly updated.
        let status = self.status()?;

        Ok(status.is_halted())
    }

    fn halt(&mut self, timeout: Duration) -> Result<CoreInformation, Error> {
        // TODO: Generic halt support

        let mut value = Dhcsr(0);
        value.set_c_halt(true);
        value.set_c_debugen(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;

        self.wait_for_core_halted(timeout)?;

        // try to read the program counter
        let pc_value = self.read_core_reg(PC.id)?;

        // get pc
        Ok(CoreInformation {
            pc: pc_value.try_into()?,
        })
    }

    fn run(&mut self) -> Result<(), Error> {
        // Before we run, we always perform a single instruction step, to account for possible breakpoints that might get us stuck on the current instruction.
        self.step()?;

        let mut value = Dhcsr(0);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;
        self.memory.flush()?;

        // We assume that the core is running now.
        self.state.current_state = CoreStatus::Running;

        Ok(())
    }

    fn step(&mut self) -> Result<CoreInformation, Error> {
        // First check if we stopped on a breakpoint, because this requires special handling before we can continue.
        let pc_before_step = self.read_core_reg(self.registers().program_counter().id)?;
        let was_breakpoint = if matches!(
            self.state.current_state,
            CoreStatus::Halted(HaltReason::Breakpoint(_))
        ) {
            self.enable_breakpoints(false)?;
            true
        } else {
            false
        };

        let mut value = Dhcsr(0);
        // Leave halted state.
        // Step one instruction.
        value.set_c_step(true);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.set_c_maskints(true);
        value.enable_write();

        self.memory.write_word_32(Dhcsr::ADDRESS, value.into())?;
        self.memory.flush()?;

        self.wait_for_core_halted(Duration::from_millis(100))?;

        // Try to read the new program counter.
        let mut pc_after_step = self.read_core_reg(self.registers().program_counter().id)?;

        // Re-enable breakpoints before we continue.
        if was_breakpoint {
            // If we were stopped on a software breakpoint, then we need to manually advance the PC, or else we will be stuck here forever.
            if pc_before_step == pc_after_step
                && !self
                    .hw_breakpoints()?
                    .contains(&pc_before_step.try_into().ok())
            {
                tracing::debug!("Encountered a breakpoint instruction @ {}. We need to manually advance the program counter to the next instruction.", pc_after_step);
                // Advance the program counter by the architecture specific byte size of the BKPT instruction.
                pc_after_step.incremenet_address(2)?;
                self.write_core_reg(self.registers().program_counter().id, pc_after_step)?;
            }
            self.enable_breakpoints(true)?;
        }

        Ok(CoreInformation {
            pc: pc_after_step.try_into()?,
        })
    }

    fn reset(&mut self) -> Result<(), Error> {
        self.sequence
            .reset_system(&mut *self.memory, crate::CoreType::Armv6m, None)?;
        Ok(())
    }

    fn reset_and_halt(&mut self, _timeout: Duration) -> Result<CoreInformation, Error> {
        self.sequence
            .reset_catch_set(&mut *self.memory, crate::CoreType::Armv6m, None)?;
        self.sequence
            .reset_system(&mut *self.memory, crate::CoreType::Armv6m, None)?;

        // Update core status
        let _ = self.status()?;

        const XPSR_THUMB: u32 = 1 << 24;
        let xpsr_value: u32 = self.read_core_reg(XPSR.id)?.try_into()?;
        if xpsr_value & XPSR_THUMB == 0 {
            self.write_core_reg(XPSR.id, (xpsr_value | XPSR_THUMB).into())?;
        }

        self.sequence
            .reset_catch_clear(&mut *self.memory, crate::CoreType::Armv6m, None)?;

        // try to read the program counter
        let pc_value = self.read_core_reg(PC.id)?;

        // get pc
        Ok(CoreInformation {
            pc: pc_value.try_into()?,
        })
    }

    fn available_breakpoint_units(&mut self) -> Result<u32, Error> {
        let result = self.memory.read_word_32(BpCtrl::ADDRESS)?;

        let register = BpCtrl::from(result);

        Ok(register.num_code())
    }

    fn enable_breakpoints(&mut self, state: bool) -> Result<(), Error> {
        tracing::debug!("Enabling breakpoints: {:?}", state);
        let mut value = BpCtrl(0);
        value.set_key(true);
        value.set_enable(state);

        self.memory.write_word_32(BpCtrl::ADDRESS, value.into())?;
        self.memory.flush()?;

        self.state.hw_breakpoints_enabled = state;

        Ok(())
    }

    fn set_hw_breakpoint(&mut self, bp_register_index: usize, addr: u64) -> Result<(), Error> {
        let addr = valid_32bit_address(addr)?;

        tracing::debug!("Setting breakpoint on address 0x{:08x}", addr);

        // The highest 3 bits of the address have to be zero, otherwise the breakpoint cannot
        // be set at the address.
        if addr >= 0x2000_0000 {
            return Err(Error::Probe(DebugProbeError::Other(anyhow::anyhow!("Unsupported address {:#08x} for HW breakpoint. Breakpoint must be at address < 0x2000_0000.", addr))));
        }

        let mut value = BpCompx(0);
        if addr % 4 < 2 {
            // match lower halfword
            value.set_bp_match(0b01);
        } else {
            // match higher halfword
            value.set_bp_match(0b10);
        }
        value.set_comp((addr >> 2) & 0x07FF_FFFF);
        value.set_enable(true);

        let register_addr = BpCompx::ADDRESS + (bp_register_index * size_of::<u32>()) as u64;

        self.memory.write_word_32(register_addr, value.into())?;

        Ok(())
    }

    fn registers(&self) -> &'static RegisterFile {
        &CORTEX_M_COMMON_REGS
    }

    fn clear_hw_breakpoint(&mut self, bp_unit_index: usize) -> Result<(), Error> {
        let register_addr = BpCompx::ADDRESS + (bp_unit_index * size_of::<u32>()) as u64;

        let mut value = BpCompx::from(0);
        value.set_enable(false);

        self.memory.write_word_32(register_addr, value.into())?;

        Ok(())
    }

    fn hw_breakpoints_enabled(&self) -> bool {
        self.state.hw_breakpoints_enabled
    }

    fn architecture(&self) -> Architecture {
        Architecture::Arm
    }

    fn core_type(&self) -> CoreType {
        CoreType::Armv6m
    }

    fn instruction_set(&mut self) -> Result<InstructionSet, Error> {
        Ok(InstructionSet::Thumb2)
    }

    fn status(&mut self) -> Result<crate::core::CoreStatus, Error> {
        let dhcsr = Dhcsr(self.memory.read_word_32(Dhcsr::ADDRESS)?);

        if dhcsr.s_lockup() {
            tracing::warn!(
                "The core is in locked up status as a result of an unrecoverable exception"
            );

            self.state.current_state = CoreStatus::LockedUp;

            return Ok(CoreStatus::LockedUp);
        }

        if dhcsr.s_sleep() {
            // Check if we assumed the core to be halted
            if self.state.current_state.is_halted() {
                tracing::warn!("Expected core to be halted, but core is running");
            }

            self.state.current_state = CoreStatus::Sleeping;

            return Ok(CoreStatus::Sleeping);
        }

        // TODO: Handle lockup

        if dhcsr.s_halt() {
            let dfsr = Dfsr(self.memory.read_word_32(Dfsr::ADDRESS)?);

            let reason = dfsr.halt_reason();

            // Clear bits from Dfsr register
            self.memory
                .write_word_32(Dfsr::ADDRESS, Dfsr::clear_all().into())?;

            // If the core was halted before, we cannot read the halt reason from the chip,
            // because we clear it directly after reading.
            if self.state.current_state.is_halted() {
                // There shouldn't be any bits set, otherwise it means
                // that the reason for the halt has changed. No bits set
                // means that we have an unkown HaltReason.
                if reason == HaltReason::Unknown {
                    tracing::debug!("Cached halt reason: {:?}", self.state.current_state);
                    return Ok(self.state.current_state);
                }

                tracing::debug!(
                    "Reason for halt has changed, old reason was {:?}, new reason is {:?}",
                    &self.state.current_state,
                    &reason
                );
            }

            self.state.current_state = CoreStatus::Halted(reason);

            return Ok(CoreStatus::Halted(reason));
        }

        // Core is neither halted nor sleeping, so we assume it is running.
        if self.state.current_state.is_halted() {
            tracing::warn!("Core is running, but we expected it to be halted");
        }

        self.state.current_state = CoreStatus::Running;

        Ok(CoreStatus::Running)
    }

    fn read_core_reg(&mut self, address: RegisterId) -> Result<RegisterValue, Error> {
        if self.state.current_state.is_halted() {
            let val = super::cortex_m::read_core_reg(&mut *self.memory, address)?;
            Ok(val.into())
        } else {
            Err(Error::Arm(ArmError::CoreNotHalted))
        }
    }

    fn write_core_reg(&mut self, address: RegisterId, value: RegisterValue) -> Result<(), Error> {
        if self.state.current_state.is_halted() {
            super::cortex_m::write_core_reg(&mut *self.memory, address, value.try_into()?)?;
            Ok(())
        } else {
            Err(Error::Arm(ArmError::CoreNotHalted))
        }
    }

    /// See docs on the [`CoreInterface::hw_breakpoints`] trait
    fn hw_breakpoints(&mut self) -> Result<Vec<Option<u64>>, Error> {
        let mut breakpoints = vec![];
        let num_hw_breakpoints = self.available_breakpoint_units()? as usize;
        for bp_unit_index in 0..num_hw_breakpoints {
            let reg_addr = BpCompx::ADDRESS + (bp_unit_index * size_of::<u32>()) as u64;
            // The raw breakpoint address as read from memory
            let register_value = self.memory.read_word_32(reg_addr)?;
            if BpCompx::from(register_value).enable() {
                let breakpoint = BpCompx::get_breakpoint_comparator(register_value)?;
                breakpoints.push(Some(breakpoint as u64));
            } else {
                breakpoints.push(None);
            }
        }
        Ok(breakpoints)
    }

    fn fpu_support(&mut self) -> Result<bool, crate::error::Error> {
        Ok(false)
    }
}

impl<'probe> MemoryInterface for Armv6m<'probe> {
    fn supports_native_64bit_access(&mut self) -> bool {
        self.memory.supports_native_64bit_access()
    }
    fn read_word_64(&mut self, address: u64) -> Result<u64, crate::error::Error> {
        let value = self.memory.read_word_64(address)?;
        Ok(value)
    }
    fn read_word_32(&mut self, address: u64) -> Result<u32, Error> {
        let value = self.memory.read_word_32(address)?;
        Ok(value)
    }
    fn read_word_8(&mut self, address: u64) -> Result<u8, Error> {
        let value = self.memory.read_word_8(address)?;
        Ok(value)
    }

    fn read_64(&mut self, address: u64, data: &mut [u64]) -> Result<(), crate::error::Error> {
        self.memory.read_64(address, data)?;
        Ok(())
    }

    fn read_32(&mut self, address: u64, data: &mut [u32]) -> Result<(), Error> {
        self.memory.read_32(address, data)?;
        Ok(())
    }

    fn read_8(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
        self.memory.read_8(address, data)?;
        Ok(())
    }

    fn write_word_64(&mut self, address: u64, data: u64) -> Result<(), crate::error::Error> {
        self.memory.write_word_64(address, data)?;
        Ok(())
    }

    fn write_word_32(&mut self, address: u64, data: u32) -> Result<(), Error> {
        self.memory.write_word_32(address, data)?;
        Ok(())
    }

    fn write_word_8(&mut self, address: u64, data: u8) -> Result<(), Error> {
        self.memory.write_word_8(address, data)?;
        Ok(())
    }

    fn write_64(&mut self, address: u64, data: &[u64]) -> Result<(), crate::error::Error> {
        self.memory.write_64(address, data)?;
        Ok(())
    }

    fn write_32(&mut self, address: u64, data: &[u32]) -> Result<(), Error> {
        self.memory.write_32(address, data)?;
        Ok(())
    }

    fn write_8(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        self.memory.write_8(address, data)?;
        Ok(())
    }

    fn write(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
        self.memory.write(address, data)?;
        Ok(())
    }

    fn supports_8bit_transfers(&self) -> Result<bool, Error> {
        let value = self.memory.supports_8bit_transfers()?;
        Ok(value)
    }

    fn flush(&mut self) -> Result<(), Error> {
        self.memory.flush()?;

        Ok(())
    }
}