1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use crate::serialize::{hex_range, hex_u_int};
use core::ops::Range;
use serde::{Deserialize, Serialize};

/// Represents a region in non-volatile memory (e.g. flash or EEPROM).
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct NvmRegion {
    /// A name to describe the region
    pub name: Option<String>,
    /// Address range of the region
    #[serde(serialize_with = "hex_range")]
    pub range: Range<u64>,
    /// True if the chip boots from this memory
    #[serde(default)]
    pub is_boot_memory: bool,
    /// List of cores that can access this region
    pub cores: Vec<String>,
    /// True if the memory region is an alias of a different memory region.
    #[serde(default)]
    pub is_alias: bool,
}

impl NvmRegion {
    /// Returns the necessary information about the NVM.
    pub fn nvm_info(&self) -> NvmInfo {
        NvmInfo {
            rom_start: self.range.start,
        }
    }
}

/// Represents a region in RAM.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct RamRegion {
    /// A name to describe the region
    pub name: Option<String>,
    /// Address range of the region
    #[serde(serialize_with = "hex_range")]
    pub range: Range<u64>,
    /// True if the chip boots from this memory
    #[serde(default)]
    pub is_boot_memory: bool,
    /// List of cores that can access this region
    pub cores: Vec<String>,
}

/// Represents a generic region.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct GenericRegion {
    /// A name to describe the region
    pub name: Option<String>,
    /// Address range of the region
    #[serde(serialize_with = "hex_range")]
    pub range: Range<u64>,
    /// List of cores that can access this region
    pub cores: Vec<String>,
}

/// Holds information about a specific, individual flash
/// sector.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct SectorInfo {
    /// Base address of the flash sector
    pub base_address: u64,
    /// Size of the flash sector
    pub size: u64,
}

/// Information about a group of flash sectors, which
/// is used as part of the [`FlashProperties`] struct.
///
/// The SectorDescription means that, starting at the
/// flash address `address`, all following sectors will
/// have a size of `size`. This is valid until either the
/// end of the flash, or until another `SectorDescription`
/// changes the sector size.
///
/// [`FlashProperties`]: crate::FlashProperties
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct SectorDescription {
    /// Size of each individual flash sector
    #[serde(serialize_with = "hex_u_int")]
    pub size: u64,
    /// Start address of the group of flash sectors, relative
    /// to the start address of the flash.
    #[serde(serialize_with = "hex_u_int")]
    pub address: u64,
}

/// Holds information about a page in flash.
#[derive(Debug, Copy, Clone)]
pub struct PageInfo {
    /// Base address of the page in flash.
    pub base_address: u64,
    /// Size of the page
    pub size: u32,
}

/// Holds information about the entire flash.
#[derive(Debug, Copy, Clone)]
pub struct NvmInfo {
    pub rom_start: u64,
}

/// Enables the user to do range intersection testing.
pub trait MemoryRange {
    /// Returns true if `self` contains `range` fully.
    fn contains_range(&self, range: &Range<u64>) -> bool;

    /// Returns true if `self` intersects `range` partially.
    fn intersects_range(&self, range: &Range<u64>) -> bool;

    /// Ensure memory reads using this memory range, will be aligned to 32 bits.
    /// This may result in slightly more memory being read than requested.
    fn align_to_32_bits(&mut self);
}

impl MemoryRange for Range<u64> {
    fn contains_range(&self, range: &Range<u64>) -> bool {
        if range.end == 0 {
            false
        } else {
            self.contains(&range.start) && self.contains(&(range.end - 1))
        }
    }

    fn intersects_range(&self, range: &Range<u64>) -> bool {
        if range.end == 0 {
            false
        } else {
            self.contains(&range.start) && !self.contains(&(range.end - 1))
                || !self.contains(&range.start) && self.contains(&(range.end - 1))
                || self.contains_range(range)
                || range.contains_range(self)
        }
    }

    fn align_to_32_bits(&mut self) {
        if self.start % 4 != 0 {
            self.start -= self.start % 4;
        }
        if self.end % 4 != 0 {
            // Try to align the end to 32 bits, but don't overflow.
            if let Some(new_end) = self.end.checked_add(4 - self.end % 4) {
                self.end = new_end;
            }
        }
    }
}

/// Declares the type of a memory region.
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum MemoryRegion {
    /// Memory region describing RAM.
    Ram(RamRegion),
    /// Generic memory region, which is neither
    /// flash nor RAM.
    Generic(GenericRegion),
    /// Memory region describing flash, EEPROM or other non-volatile memory.
    #[serde(alias = "Flash")] // Keeping the "Flash" name this for backwards compatibility
    Nvm(NvmRegion),
}

impl MemoryRegion {
    /// Returns the RAM region if this is a RAM region, otherwise None.
    pub fn as_ram_region(&self) -> Option<&RamRegion> {
        match self {
            MemoryRegion::Ram(region) => Some(region),
            _ => None,
        }
    }

    /// Returns the NVM region if this is a NVM region, otherwise None.
    pub fn as_nvm_region(&self) -> Option<&NvmRegion> {
        match self {
            MemoryRegion::Nvm(region) => Some(region),
            _ => None,
        }
    }

    /// Returns the address range of the memory region.
    pub fn address_range(&self) -> Range<u64> {
        match self {
            MemoryRegion::Ram(rr) => rr.range.clone(),
            MemoryRegion::Generic(gr) => gr.range.clone(),
            MemoryRegion::Nvm(nr) => nr.range.clone(),
        }
    }

    /// Returns whether the memory region contains the given address.
    pub fn contains(&self, address: u64) -> bool {
        self.address_range().contains(&address)
    }

    /// Get the cores to which this memory region belongs.
    pub fn cores(&self) -> &[String] {
        match self {
            MemoryRegion::Ram(region) => &region.cores,
            MemoryRegion::Generic(region) => &region.cores,
            MemoryRegion::Nvm(region) => &region.cores,
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn contains_range1() {
        let range1 = 0..1;
        let range2 = 0..1;
        assert!(range1.contains_range(&range2));
    }

    #[test]
    fn contains_range2() {
        let range1 = 0..1;
        let range2 = 0..2;
        assert!(!range1.contains_range(&range2));
    }

    #[test]
    fn contains_range3() {
        let range1 = 0..4;
        let range2 = 0..1;
        assert!(range1.contains_range(&range2));
    }

    #[test]
    fn contains_range4() {
        let range1 = 4..8;
        let range2 = 3..9;
        assert!(!range1.contains_range(&range2));
    }

    #[test]
    fn contains_range5() {
        let range1 = 4..8;
        let range2 = 0..1;
        assert!(!range1.contains_range(&range2));
    }

    #[test]
    fn contains_range6() {
        let range1 = 4..8;
        let range2 = 6..8;
        assert!(range1.contains_range(&range2));
    }

    #[test]
    fn intersects_range1() {
        let range1 = 0..1;
        let range2 = 0..1;
        assert!(range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range2() {
        let range1 = 0..1;
        let range2 = 0..2;
        assert!(range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range3() {
        let range1 = 0..4;
        let range2 = 0..1;
        assert!(range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range4() {
        let range1 = 4..8;
        let range2 = 3..9;
        assert!(range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range5() {
        let range1 = 4..8;
        let range2 = 0..1;
        assert!(!range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range6() {
        let range1 = 4..8;
        let range2 = 6..8;
        assert!(range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range7() {
        let range1 = 4..8;
        let range2 = 3..4;
        assert!(!range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range8() {
        let range1 = 8..9;
        let range2 = 6..8;
        assert!(!range1.intersects_range(&range2));
    }

    #[test]
    fn intersects_range9() {
        let range1 = 2..4;
        let range2 = 6..8;
        assert!(!range1.intersects_range(&range2));
    }

    #[test]
    fn test_align_to_32_bits_case1() {
        // Test case 1: start and end are already aligned
        let mut range = Range { start: 0, end: 8 };
        range.align_to_32_bits();
        assert_eq!(range.start, 0);
        assert_eq!(range.end, 8);
    }

    #[test]
    fn test_align_to_32_bits_case2() {
        // Test case 2: start is not aligned, end is aligned
        let mut range = Range { start: 3, end: 12 };
        range.align_to_32_bits();
        assert_eq!(range.start, 0);
        assert_eq!(range.end, 12);
    }

    #[test]
    fn test_align_to_32_bits_case3() {
        // Test case 3: start is aligned, end is not aligned
        let mut range = Range { start: 16, end: 23 };
        range.align_to_32_bits();
        assert_eq!(range.start, 16);
        assert_eq!(range.end, 24);
    }

    #[test]
    fn test_align_to_32_bits_case4() {
        // Test case 4: start and end are not aligned
        let mut range = Range { start: 5, end: 13 };
        range.align_to_32_bits();
        assert_eq!(range.start, 4);
        assert_eq!(range.end, 16);
    }
}