1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
#![allow(unused_variables)]

//! Extended graphics state, for advanced graphical operation (overprint, black point control, etc.)
//!
//! Some of the operations can be done on the layer directly, but for advanced graphics,
//! you need to set the graphics state. A PDF has an internal default graphics state,
//! which can be reset to by setting `ExtendedGraphicsState::default()` as the active gs
//! dictionary. Setting a new graphics state overwrites the old one, there is no "undo".
//!
//! In order to use a graphics state, it must be added to the Pages resource dicitionary.
//! This is done by the `layer.set_graphics_state()` function, which returns a reference with the name of
//! the newly added dictionary. From inside a stream, the graphics state parameter is invoked
//! with the "gs" command using the name of the graphics state as a operator.
//! This is done using the `layer.use_graphics_state()`.
//!
//! A full graphics state change is done like this:
//!
//! ```rust,ignore
//! let mut new_state = ExtendedGraphicsState::default();
//! new_state.overprint_stroke = true;
//!
//! // it is best to put the next lines in a seperate function
//! // A PdfLayerReferences contains the indices of the page and the layer
//! // as well as a `std::sync::Weak` reference to the document.
//! // This is why you need the braces, otherwise, you'll trigger a deadlock
//! {
//!     // supposing mylayer is a PdfLayerReference
//!     let doc = mylayer.document.upgrade().unwrap();
//!     let mut doc = doc.lock().unwrap();
//!     let mut page = doc.pages.get_mut(self.page.0).unwrap();
//!
//!     // see the documentation for add_graphics_state
//!     page.add_graphics_state(new_state);
//! }
//! ```

use lopdf;
use lopdf::content::Operation;
use lopdf::Object::*;
use std::string::String;
use indices::FontIndex;
use std::collections::HashSet;
use std::collections::HashMap;

// identifiers for tracking the changed fields
pub (crate) const LINE_WIDTH: &'static str = "line_width";
pub (crate) const LINE_CAP: &'static str = "line_cap";
pub (crate) const LINE_JOIN: &'static str = "line_join";
pub (crate) const MITER_LIMIT: &'static str = "miter_limit";
pub (crate) const LINE_DASH_PATTERN: &'static str = "line_dash_pattern";
pub (crate) const RENDERING_INTENT: &'static str = "rendering_intent";
pub (crate) const OVERPRINT_STROKE: &'static str = "overprint_stroke";
pub (crate) const OVERPRINT_FILL: &'static str = "overprint_fill";
pub (crate) const OVERPRINT_MODE: &'static str = "overprint_mode";
pub (crate) const FONT: &'static str = "font";
pub (crate) const BLACK_GENERATION: &'static str = "black_generation";
pub (crate) const BLACK_GENERATION_EXTRA: &'static str = "black_generation_extra";
pub (crate) const UNDERCOLOR_REMOVAL: &'static str = "under_color_removal";
pub (crate) const UNDERCOLOR_REMOVAL_EXTRA: &'static str = "undercolor_removal_extra";
pub (crate) const TRANSFER_FUNCTION: &'static str = "transfer_function";
pub (crate) const TRANSFER_FUNCTION_EXTRA: &'static str = "transfer_function_extra";
pub (crate) const HALFTONE_DICTIONARY: &'static str = "halftone_dictionary";
pub (crate) const FLATNESS_TOLERANCE: &'static str = "flatness_tolerance";
pub (crate) const SMOOTHNESS_TOLERANCE: &'static str = "smoothness_tolerance";
pub (crate) const STROKE_ADJUSTMENT: &'static str = "stroke_adjustment";
pub (crate) const BLEND_MODE: &'static str = "blend_mode";
pub (crate) const SOFT_MASK: &'static str = "soft_mask";
pub (crate) const CURRENT_STROKE_ALPHA: &'static str = "current_stroke_alpha";
pub (crate) const CURRENT_FILL_ALPHA: &'static str = "current_fill_alpha";
pub (crate) const ALPHA_IS_SHAPE: &'static str = "alpha_is_shape";
pub (crate) const TEXT_KNOCKOUT: &'static str = "text_knockout";

/// List of many `ExtendedGraphicsState`
#[derive(Debug, Clone)]
pub struct ExtendedGraphicsStateList {
    /// Current indent level + current graphics state
    pub(crate) latest_graphics_state: (usize, ExtendedGraphicsState),
    /// All graphics states needed for this layer, collected together with a name for each one
    /// The name should be: "GS[index of the graphics state]", so `/GS0` for the first graphics state.
    pub(crate) all_graphics_states: HashMap<String, (usize, ExtendedGraphicsState)>,
}

impl Default for ExtendedGraphicsStateList {
    fn default()
    -> Self
    {
        Self {
            latest_graphics_state: (0, ExtendedGraphicsState::default()),
            all_graphics_states: HashMap::new(),
        }
    }
}

impl ExtendedGraphicsStateList {
    /// Creates a new ExtendedGraphicsStateList
    pub fn new()
    -> Self
    {
        Self::default()
    }

    /// Adds a graphics state
    pub fn add_graphics_state(&mut self, added_state: ExtendedGraphicsState)
    -> ExtendedGraphicsStateRef
    {
        let gs_ref = ExtendedGraphicsStateRef::new(self.all_graphics_states.len());
        self.all_graphics_states.insert(gs_ref.gs_name.clone(), (self.latest_graphics_state.0, added_state.clone()));
        self.latest_graphics_state = (self.latest_graphics_state.0, added_state);
        gs_ref
    }
}

impl Into<lopdf::Dictionary> for ExtendedGraphicsStateList {

    #[cfg_attr(feature = "cargo-clippy", allow(needless_return))]
    fn into(self)
    -> lopdf::Dictionary
    {
        let mut ext_g_state_resources = lopdf::Dictionary::new();

        for (name, (_, graphics_state)) in self.all_graphics_states {
            let gs: lopdf::Object = graphics_state.into();
            ext_g_state_resources.set(name.to_string(), gs);
        }

        return ext_g_state_resources;
    }
}

/// `ExtGState` dictionary
#[derive(Debug, PartialEq, Clone)]
pub struct ExtendedGraphicsState {
    /* /Type ExtGState */

    /// NOTE: We need to track which fields have changed in relation to the default() method.
    /// This is because we want to optimize out the fields that haven't changed in relation
    /// to the last graphics state. Please use only the constants defined in this module for
    /// declaring the changed fields. The way to go about this is to first convert the ExtGState
    /// into a vector of operations and then remove all operations that are unnecessary
    /// before writing the document.
    ///
    /// If you are unsure about this, please use the `.with_[field name]` method. These methods
    /// will set the `changed_fields` to the correct values. If you want to take care of this field
    /// manually: Every time you change a field on the ExtGState dicitionary, you have to add the
    /// string identifier of that field into the `changed_fields` vector.
    pub(crate) changed_fields: HashSet<&'static str>,

    /* LW float */
    /// __(Optional; PDF 1.3)__ The current line width
    pub(crate) line_width: f64,

    /* LC integer */
    /// __(Optional; PDF 1.3)__ The current line cap style
    pub(crate) line_cap: LineCapStyle,

    /* LJ integer */
    /// __(Optional; PDF 1.3)__ The current line join style
    pub(crate) line_join: LineJoinStyle,

    /* ML float */
    /// __(Optional; PDF 1.3)__ The miter limit (see “Miter Limit” on page 217).
    pub(crate) miter_limit: f64,

    /* D array */
    /// __(Optional; PDF 1.3)__ The line dash pattern, expressed as an array of the form
    /// [ dashArray dashPhase ] , where dashArray is itself an array and dashPhase is an
    /// integer (see “Line Dash Pattern” on page 217).
    pub(crate) line_dash_pattern: Option<LineDashPattern>,

    /* RI name (or ri inside a stream)*/
    /// __(Optional; PDF 1.3)__ The name of the rendering intent (see “Rendering
    /// Intents” on page 260).
    pub(crate) rendering_intent: RenderingIntent,

    /* OP boolean */
    /// __(Optional)__ A flag specifying whether to apply overprint (see Section 4.5.6,
    /// “Overprint Control”). In PDF 1.2 and earlier, there is a single overprint
    /// parameter that applies to all painting operations. Beginning with PDF 1.3,
    /// there are two separate overprint parameters: one for stroking and one for all
    /// other painting operations. Specifying an OP entry sets both parameters un-
    /// less there is also an op entry in the same graphics state parameter dictionary,
    /// in which case the OP entry sets only the overprint parameter for stroking.
    pub(crate) overprint_stroke: bool,

    /* op boolean */
    /// __(Optional; PDF 1.3)__ A flag specifying whether to apply overprint (see Section
    /// 4.5.6, “Overprint Control”) for painting operations other than stroking. If
    /// this entry is absent, the OP entry, if any, sets this parameter.
    pub(crate) overprint_fill: bool,

    /* OPM integer */
    /// __(Optional; PDF 1.3)__ The overprint mode (see Section 4.5.6, “Overprint Control”)
    /// Initial value: `EraseUnderlying`
    pub(crate) overprint_mode: OverprintMode,

    /* Font array */
    /// Font structure, expects a dictionary,
    pub(crate) font: Option<FontIndex>,

    /* BG function */
    /// __(Optional)__ The black-generation function, which maps the interval [ 0.0 1.0 ]
    /// to the interval [ 0.0 1.0 ] (see Section 6.2.3, “Conversion from DeviceRGB to
    /// DeviceCMYK”)
    pub(crate) black_generation: Option<BlackGenerationFunction>,

    /* BG2 function or name */
    /// __(Optional; PDF 1.3)__ Same as BG except that the value may also be the name
    /// Default , denoting the black-generation function that was in effect at the start
    /// of the page. If both BG and BG2 are present in the same graphics state param-
    /// eter dictionary, BG2 takes precedence.
    pub(crate) black_generation_extra: Option<BlackGenerationExtraFunction>,

    /* UCR function */
    /// __(Optional)__ The undercolor-removal function, which maps the interval
    /// [ 0.0 1.0 ] to the interval [ −1.0 1.0 ] (see Section 6.2.3, “Conversion from
    /// DeviceRGB to DeviceCMYK”).
    pub(crate) under_color_removal: Option<UnderColorRemovalFunction>,

    /* UCR2 function */
    /// __(Optional; PDF 1.3)__ Same as UCR except that the value may also be the name
    /// Default , denoting the undercolor-removal function that was in effect at the
    /// start of the page. If both UCR and UCR2 are present in the same graphics state
    /// parameter dictionary, UCR2 takes precedence.
    pub(crate) under_color_removal_extra: Option<UnderColorRemovalExtraFunction>,

    /* TR function */
    /// __(Optional)__ The transfer function, which maps the interval [ 0.0 1.0 ] to the in-
    /// terval [ 0.0 1.0 ] (see Section 6.3, “Transfer Functions”). The value is either a
    /// single function (which applies to all process colorants) or an array of four
    /// functions (which apply to the process colorants individually). The name
    /// Identity may be used to represent the identity function.
    pub(crate) transfer_function: Option<TransferFunction>,

    /* TR2 function */
    /// __(Optional; PDF 1.3)__ Same as TR except that the value may also be the name
    /// Default , denoting the transfer function that was in effect at the start of the
    /// page. If both TR and TR2 are present in the same graphics state parameter dic-
    /// tionary, TR2 takes precedence.
    pub(crate) transfer_extra_function: Option<TransferExtraFunction>,

    /* HT [dictionary, stream or name] */
    /// __(Optional)__ The halftone dictionary or stream (see Section 6.4, “Halftones”) or
    /// the name Default , denoting the halftone that was in effect at the start of the
    /// page.
    pub(crate) halftone_dictionary: Option<HalftoneType>,

    /* FL integer */
    /// __(Optional; PDF 1.3)__ The flatness tolerance (see Section 6.5.1, “Flatness Toler-
    /// ance”).
    pub(crate) flatness_tolerance: f64,

    /* SM integer */
    /// __(Optional; PDF 1.3)__ The smoothness tolerance (see Section 6.5.2, “Smooth-
    /// ness Tolerance”).
    pub(crate) smoothness_tolerance: f64,

    /* SA integer */
    /// (Optional) A flag specifying whether to apply automatic stroke adjustment
    /// (see Section 6.5.4, “Automatic Stroke Adjustment”).
    pub(crate) stroke_adjustment: bool,

    /* BM name or array */
    /// __(Optional; PDF 1.4)__ The current blend mode to be used in the transparent
    /// imaging model (see Sections 7.2.4, “Blend Mode,” and 7.5.2, “Specifying
    /// Blending Color Space and Blend Mode”).
    pub(crate) blend_mode: BlendMode,

    /* SM dictionary or name */
    /// __(Optional; PDF 1.4)__ The current soft mask, specifying the mask shape or
    /// mask opacity values to be used in the transparent imaging model (see
    /// “Source Shape and Opacity” on page 526 and “Mask Shape and Opacity” on
    /// page 550).
    ///
    /// *Note:* Although the current soft mask is sometimes referred to as a “soft clip,”
    /// altering it with the gs operator completely replaces the old value with the new
    /// one, rather than intersecting the two as is done with the current clipping path
    /// parameter (see Section 4.4.3, “Clipping Path Operators”).
    pub(crate) soft_mask: Option<SoftMask>,

    /* CA integer */
    /// __(Optional; PDF 1.4)__ The current stroking alpha constant, specifying the con-
    /// stant shape or constant opacity value to be used for stroking operations in the
    /// transparent imaging model (see “Source Shape and Opacity” on page 526 and
    /// “Constant Shape and Opacity” on page 551).
    pub(crate) current_stroke_alpha: f64,

    /* ca integer */
    /// __(Optional; PDF 1.4)__ Same as CA , but for nonstroking operations.
    pub(crate) current_fill_alpha: f64,

    /* AIS boolean */
    /// __(Optional; PDF 1.4)__ The alpha source flag (“alpha is shape”), specifying
    /// whether the current soft mask and alpha constant are to be interpreted as
    /// shape values ( true ) or opacity values ( false )
    /// true if the soft mask contains shape values, false for opacity
    pub(crate) alpha_is_shape: bool,

    /* TK boolean */
    /// __(Optional; PDF 1.4)__ The text knockout flag, which determines the behavior of
    /// overlapping glyphs within a text object in the transparent imaging model (see
    /// Section 5.2.7, “Text Knockout”).
    pub(crate) text_knockout: bool,
}

#[derive(Debug, Clone, Default)]
pub struct ExtendedGraphicsStateBuilder {
    /// Private field so we can control the `changed_fields` parameter
    gs: ExtendedGraphicsState,
}

impl ExtendedGraphicsStateBuilder {

    /// Creates a new graphics state builder
    pub fn new()
    -> Self
    {
        Self::default()
    }

    /// Sets the line width
    #[inline]
    pub fn with_line_width(mut self, line_width: f64)
    -> Self
    {
        self.gs.line_width = line_width;
        self.gs.changed_fields.insert(LINE_WIDTH);
        self
    }

    /// Sets the line cap
    #[inline]
    pub fn with_line_cap(mut self, line_cap: LineCapStyle)
    -> Self
    {
        self.gs.line_cap = line_cap;
        self.gs.changed_fields.insert(LINE_CAP);
        self
    }

    /// Sets the line join
    #[inline]
    pub fn with_line_join(mut self, line_join: LineJoinStyle)
    -> Self
    {
        self.gs.line_join = line_join;
        self.gs.changed_fields.insert(LINE_JOIN);
        self
    }

    /// Sets the miter limit
    #[inline]
    pub fn with_miter_limit(mut self, miter_limit: f64)
    -> Self
    {
        self.gs.miter_limit = miter_limit;
        self.gs.changed_fields.insert(MITER_LIMIT);
        self
    }

    /// Sets the rendering intent
    #[inline]
    pub fn with_rendering_intent(mut self, rendering_intent: RenderingIntent)
    -> Self
    {
        self.gs.rendering_intent = rendering_intent;
        self.gs.changed_fields.insert(RENDERING_INTENT);
        self
    }

    /// Sets the stroke overprint
    #[inline]
    pub fn with_overprint_stroke(mut self, overprint_stroke: bool)
    -> Self
    {
        self.gs.overprint_stroke = overprint_stroke;
        self.gs.changed_fields.insert(OVERPRINT_STROKE);
        self
    }

    /// Sets the fill overprint
    #[inline]
    pub fn with_overprint_fill(mut self, overprint_fill: bool)
    -> Self
    {
        self.gs.overprint_fill = overprint_fill;
        self.gs.changed_fields.insert(OVERPRINT_FILL);
        self
    }

    /// Sets the overprint mode
    #[inline]
    pub fn with_overprint_mode(mut self, overprint_mode: OverprintMode)
    -> Self
    {
        self.gs.overprint_mode = overprint_mode;
        self.gs.changed_fields.insert(OVERPRINT_MODE);
        self
    }

    /// Sets the font
    /// __WARNING:__ Use `layer.add_font()` instead if you are not absolutely sure.
    #[inline]
    pub fn with_font(mut self, font: Option<FontIndex>)
    -> Self
    {
        self.gs.font = font;
        self.gs.changed_fields.insert(FONT);
        self
    }

    /// Sets the black generation
    #[inline]
    pub fn with_black_generation(mut self, black_generation: Option<BlackGenerationFunction>)
    -> Self
    {
        self.gs.black_generation = black_generation;
        self.gs.changed_fields.insert(BLACK_GENERATION);
        self
    }

    /// Sets the black generation extra function
    #[inline]
    pub fn with_black_generation_extra(mut self, black_generation_extra: Option<BlackGenerationExtraFunction>)
    -> Self
    {
        self.gs.black_generation_extra = black_generation_extra;
        self.gs.changed_fields.insert(BLACK_GENERATION_EXTRA);
        self
    }

    /// Sets the undercolor removal function
    #[inline]
    pub fn with_undercolor_removal(mut self, under_color_removal: Option<UnderColorRemovalFunction>)
    -> Self
    {
        self.gs.under_color_removal = under_color_removal;
        self.gs.changed_fields.insert(UNDERCOLOR_REMOVAL);
        self
    }

    /// Sets the undercolor removal extra function
    #[inline]
    pub fn with_undercolor_removal_extra(mut self, under_color_removal_extra: Option<UnderColorRemovalExtraFunction>)
    -> Self
    {
        self.gs.under_color_removal_extra = under_color_removal_extra;
        self.gs.changed_fields.insert(UNDERCOLOR_REMOVAL_EXTRA);
        self
    }

    /// Sets the transfer function
    #[inline]
    pub fn with_transfer(mut self, transfer_function: Option<TransferFunction>)
    -> Self
    {
        self.gs.transfer_function = transfer_function;
        self.gs.changed_fields.insert(TRANSFER_FUNCTION);
        self
    }

    /// Sets the transfer extra function
    #[inline]
    pub fn with_transfer_extra(mut self, transfer_extra_function: Option<TransferExtraFunction>)
    -> Self
    {
        self.gs.transfer_extra_function = transfer_extra_function;
        self.gs.changed_fields.insert(TRANSFER_FUNCTION_EXTRA);
        self
    }

    /// Sets the halftone dictionary
    #[inline]
    pub fn with_halftone(mut self, halftone_type: Option<HalftoneType>)
    -> Self
    {
        self.gs.halftone_dictionary = halftone_type;
        self.gs.changed_fields.insert(HALFTONE_DICTIONARY);
        self
    }

    /// Sets the flatness tolerance
    #[inline]
    pub fn with_flatness_tolerance(mut self, flatness_tolerance: f64)
    -> Self
    {
        self.gs.flatness_tolerance = flatness_tolerance;
        self.gs.changed_fields.insert(FLATNESS_TOLERANCE);
        self
    }

    /// Sets the smoothness tolerance
    #[inline]
    pub fn with_smoothness_tolerance(mut self, smoothness_tolerance: f64)
    -> Self
    {
        self.gs.smoothness_tolerance = smoothness_tolerance;
        self.gs.changed_fields.insert(SMOOTHNESS_TOLERANCE);
        self
    }

    /// Sets the stroke adjustment
    #[inline]
    pub fn with_stroke_adjustment(mut self, stroke_adjustment: bool)
    -> Self
    {
        self.gs.stroke_adjustment = stroke_adjustment;
        self.gs.changed_fields.insert(STROKE_ADJUSTMENT);
        self
    }

    /// Sets the blend mode
    #[inline]
    pub fn with_blend_mode(mut self, blend_mode: BlendMode)
    -> Self
    {
        self.gs.blend_mode = blend_mode;
        self.gs.changed_fields.insert(BLEND_MODE);
        self
    }

    /// Sets the soft mask
    #[inline]
    pub fn with_soft_mask(mut self, soft_mask: Option<SoftMask>)
    -> Self
    {
        self.gs.soft_mask = soft_mask;
        self.gs.changed_fields.insert(SOFT_MASK);
        self
    }

    /// Sets the current alpha for strokes
    #[inline]
    pub fn with_current_stroke_alpha(mut self, current_stroke_alpha: f64)
    -> Self
    {
        self.gs.current_stroke_alpha = current_stroke_alpha;
        self.gs.changed_fields.insert(CURRENT_STROKE_ALPHA);
        self
    }

    /// Sets the current alpha for fills
    #[inline]
    pub fn with_current_fill_alpha(mut self, current_fill_alpha: f64)
    -> Self
    {
        self.gs.current_fill_alpha = current_fill_alpha;
        self.gs.changed_fields.insert(CURRENT_FILL_ALPHA);
        self
    }

    /// Sets the current "alpha is shape"
    #[inline]
    pub fn with_alpha_is_shape(mut self, alpha_is_shape: bool)
    -> Self
    {
        self.gs.alpha_is_shape = alpha_is_shape;
        self.gs.changed_fields.insert(ALPHA_IS_SHAPE);
        self
    }

    /// Sets the current text knockout
    #[inline]
    pub fn with_text_knockout(mut self, text_knockout: bool)
    -> Self
    {
        self.gs.text_knockout = text_knockout;
        self.gs.changed_fields.insert(TEXT_KNOCKOUT);
        self
    }

    /// Consumes the builder and returns an actual ExtendedGraphicsState
    #[inline]
    #[cfg_attr(feature = "cargo-clippy", allow(needless_return))]
    pub fn build(self)
    -> ExtendedGraphicsState
    {
        return self.gs;
    }
}

impl Default for ExtendedGraphicsState {
    /// Creates a default ExtGState dictionary. Useful for resetting
    fn default()
    -> Self
    {
        Self {
            changed_fields: HashSet::new(),
            line_width: 1.0,
            line_cap: LineCapStyle::Butt,
            line_join: LineJoinStyle::Miter,
            miter_limit: 0.0,
            line_dash_pattern: None,
            rendering_intent: RenderingIntent::RelativeColorimetric,
            overprint_stroke: false,
            overprint_fill: false,
            overprint_mode: OverprintMode::EraseUnderlying,
            font: None,
            black_generation: None,
            black_generation_extra: None,
            under_color_removal: None,
            under_color_removal_extra: None,
            transfer_function: None,
            transfer_extra_function: None,
            halftone_dictionary: None,
            flatness_tolerance: 0.0,
            smoothness_tolerance: 0.0,
            stroke_adjustment: true,
            blend_mode: BlendMode::Seperable(SeperableBlendMode::Normal),
            soft_mask: None,
            current_stroke_alpha: 1.0, /* 1.0 = opaque, not transparent*/
            current_fill_alpha: 1.0,
            alpha_is_shape: false,
            text_knockout: false,
        }
    }
}

impl Into<lopdf::Object> for ExtendedGraphicsState {

    /// Compares the current graphics state with the previous one and returns an
    /// "optimized" graphics state, meaning only the fields that have changed in
    /// comparison to the previous one are returned.
    #[cfg_attr(feature = "cargo-clippy", allow(needless_return))]
    #[cfg_attr(feature = "cargo-clippy", allow(cyclomatic_complexity))]
    #[cfg_attr(feature = "cargo-clippy", allow(string_lit_as_bytes))]
    fn into(self)
    -> lopdf::Object
    {
        use std::iter::FromIterator;
        let mut gs_operations = Vec::<(String, lopdf::Object)>::new();

        // for each field, look if it was contained in the "changed fields"
        if self.changed_fields.contains(LINE_WIDTH) {
            gs_operations.push(("LW".to_string(), self.line_width.into()));
        }

        if self.changed_fields.contains(LINE_CAP) {
            gs_operations.push(("LC".to_string(), self.line_cap.into()));
        }

        if self.changed_fields.contains(LINE_JOIN) {
            gs_operations.push(("LJ".to_string(), self.line_join.into()));
        }

        if self.changed_fields.contains(MITER_LIMIT) {
            gs_operations.push(("ML".to_string(), self.miter_limit.into()));
        }

        if self.changed_fields.contains(FLATNESS_TOLERANCE) {
            gs_operations.push(("FL".to_string(), self.flatness_tolerance.into()));
        }

        if self.changed_fields.contains(RENDERING_INTENT) {
            gs_operations.push(("RI".to_string(), self.rendering_intent.into()));
        }

        if self.changed_fields.contains(STROKE_ADJUSTMENT) {
            gs_operations.push(("SA".to_string(), self.stroke_adjustment.into()));
        }

        if self.changed_fields.contains(OVERPRINT_FILL) {
            gs_operations.push(("OP".to_string(), self.overprint_fill.into()));
        }

        if self.changed_fields.contains(OVERPRINT_STROKE) {
            gs_operations.push(("op".to_string(), self.overprint_stroke.into()));
        }

        if self.changed_fields.contains(OVERPRINT_MODE) {
            gs_operations.push(("OPM".to_string(), self.overprint_mode.into()));
        }

        if self.changed_fields.contains(CURRENT_FILL_ALPHA) {
            gs_operations.push(("CA".to_string(), self.current_fill_alpha.into()));
        }

        if self.changed_fields.contains(CURRENT_STROKE_ALPHA) {
            gs_operations.push(("ca".to_string(), self.current_stroke_alpha.into()));
        }

        if self.changed_fields.contains(BLEND_MODE) {
            gs_operations.push(("BM".to_string(), self.blend_mode.into()));
        }

        if self.changed_fields.contains(ALPHA_IS_SHAPE) {
            gs_operations.push(("AIS".to_string(), self.alpha_is_shape.into()));
        }

        if self.changed_fields.contains(TEXT_KNOCKOUT) {
            gs_operations.push(("TK".to_string(), self.text_knockout.into()));
        }

        // set optional parameters
        if let Some(ldp) = self.line_dash_pattern {
            if self.changed_fields.contains(LINE_DASH_PATTERN) {
                let pattern: lopdf::Object = ldp.into();
                gs_operations.push(("D".to_string(), pattern));
            }
        }

        if let Some(ref font) = self.font {
            if self.changed_fields.contains(FONT) {
                // let font_ref: lopdf::Object = font.into(); /* should be a reference to a font dictionary later on*/
                // gs_operations.push(("Font".to_string(), font_ref));
            }
        }

        // todo: transfer functions, halftone functions,
        // black generation, undercolor removal
        // these types cannot yet be converted into lopdf::Objects,
        // need to implement Into<Object> for them

        if self.changed_fields.contains(BLACK_GENERATION) {
            if let Some(ref black_generation) = self.black_generation {

            }
        }

        if self.changed_fields.contains(BLACK_GENERATION_EXTRA) {
            if let Some(ref black_generation_extra) = self.black_generation_extra {

            }
        }

        if self.changed_fields.contains(UNDERCOLOR_REMOVAL) {
            if let Some(ref under_color_removal) = self.under_color_removal {

            }
        }

        if self.changed_fields.contains(UNDERCOLOR_REMOVAL_EXTRA) {
            if let Some(ref under_color_removal_extra) = self.under_color_removal_extra {

           }
        }

        if self.changed_fields.contains(TRANSFER_FUNCTION) {
            if let Some(ref transfer_function) = self.transfer_function {

            }
        }

        if self.changed_fields.contains(TRANSFER_FUNCTION_EXTRA) {
            if let Some(ref transfer_extra_function) = self.transfer_extra_function {

            }
        }

        if self.changed_fields.contains(HALFTONE_DICTIONARY) {
            if let Some(ref halftone_dictionary) = self.halftone_dictionary {

            }
        }

        if self.changed_fields.contains(SOFT_MASK) {
            if let Some(ref soft_mask) = self.soft_mask {

            } else {
                gs_operations.push(("SM".to_string(), Name("None".as_bytes().to_vec())));
            }
        }

        // if there are operations, push the "Type > ExtGState"
        // otherwise, just return an empty dictionary
        if !gs_operations.is_empty() {
            gs_operations.push(("Type".to_string(), "ExtGState".into()));
        }

        let graphics_state = lopdf::Dictionary::from_iter(gs_operations);

        return Dictionary(graphics_state);
    }
}

/// A reference to the graphics state, for reusing the
/// graphics state during a stream without adding new graphics states all the time
pub struct ExtendedGraphicsStateRef {
    /// The name / hash of the graphics state
    pub(crate) gs_name: String,
}

impl ExtendedGraphicsStateRef {
    /// Creates a new graphics state reference (in order to be unique inside a page)
    #[inline]
    pub fn new(index: usize)
    -> Self
    {
        Self {
            gs_name: format!("GS{:?}", index)
        }
    }
}

/// __(PDF 1.3)__ A code specifying whether a color component value of 0
/// in a `DeviceCMYK` color space should erase that component (`EraseUnderlying`) or
/// leave it unchanged (`KeepUnderlying`) when overprinting (see Section 4.5.6, “Over-
/// print Control”). Initial value: `EraseUnderlying`
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum OverprintMode {
    /// Erase underlying color when overprinting
    EraseUnderlying, /* 0, default */
    /// Keep underlying color when overprinting
    KeepUnderlying,  /* 1 */
}

impl Into<lopdf::Object> for OverprintMode {
    fn into(self)
    -> lopdf::Object
    {
        use self::OverprintMode::*;
        match self {
            EraseUnderlying     => Integer(0),
            KeepUnderlying      => Integer(1),
        }
    }
}

/// Black generation calculates the amount of black to be used when trying to
/// reproduce a particular color.
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum BlackGenerationFunction {
    /// Regular black generation function
    ///
    /// ```rust,ignore
    /// let cyan = 1.0 - red;
    /// let magenta = 1.0 - green;
    /// let yellow = 1.0 - blue;
    /// let black = min(cyan, magenta, yellow);
    /// ```
    Default,
    /// Expects an UnderColorRemoval to be set. This will compensate
    /// the color for the added black
    ///
    /// ```rust,ignore
    /// let cyan = 1.0 - red;
    /// let magenta = 1.0 - green;
    /// let yellow = 1.0 - blue;
    /// let black = min(cyan, magenta, yellow);
    /// ```
    WithUnderColorRemoval,
}

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum BlackGenerationExtraFunction {

}

/// See `BlackGenerationFunction`, too. Undercolor removal reduces the amounts
/// of the cyan, magenta, and yellow components to compensate for the amount of
/// black that was added by black generation.
///
/// The undercolor-removal function computes the amount to subtract from each of
/// the intermediate c, m, and y values to produce the final cyan, magenta, and yellow
/// components. It can simply return its k operand unchanged, or it can return 0.0
/// (so that no color is removed), some fraction of the black amount, or even a
/// negative amount, thereby adding to the total amount of colorant.
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum UnderColorRemovalFunction {
    Default,
}

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum UnderColorRemovalExtraFunction {

}

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum TransferFunction {

}

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum TransferExtraFunction {

}

/// In PDF 1.2, the graphics state includes a current halftone parameter,
/// which determines the halftoning process to be used by the painting operators.
/// It may be defined by either a dictionary or a stream, depending on the
/// type of halftone; the term halftone dictionary is used generically
/// throughout this section to refer to either a dictionary object or the
/// dictionary portion of a stream object. (The halftones that are defined
/// by streams are specifically identified as such in the descriptions
/// of particular halftone types; unless otherwise stated, they are
/// understood to be defined by simple dictionaries instead.)

/*
    <<
        /Type /Halftone
        /HalftoneType 1
        /Frequency 120
        /Angle 30
        /SpotFunction /CosineDot
        /TransferFunction /Identity
    >>
*/

/// Deserialized into Integer: 1, 5, 6, 10 or 16
#[derive(Debug, PartialEq, Clone)]
pub enum HalftoneType {
    /// 1: Defines a single halftone screen by a frequency, angle, and spot function
    Type1(f64, f64, SpotFunction),
    /// 5: Defines an arbitrary number of halftone screens, one for each colorant or
    /// color component (including both primary and spot colorants).
    /// The keys in this dictionary are names of colorants; the values are halftone
    /// dictionaries of other types, each defining the halftone screen for a single colorant.
    Type5(Vec<HalftoneType>),
    /// 6: Defines a single halftone screen by a threshold array containing 8-bit sample values.
    Type6(Vec<u8>),
    /// 10: Defines a single halftone screen by a threshold array containing 8-bit sample values,
    /// representing a halftone cell that may have a nonzero screen angle.
    Type10(Vec<u8>),
    /// 16: __(PDF 1.3)__ Defines a single halftone screen by a threshold array containing 16-bit
    /// sample values, representing a halftone cell that may have a nonzero screen angle.
    Type16(Vec<u16>),
}

impl HalftoneType {
    /// Get the identifer integer of the HalftoneType
    pub fn get_type(&self)
    -> i64
    {
        use self::HalftoneType::*;
        match *self {
            Type1(_, _, _) => 1,
            Type5(_) => 5, /* this type does not actually exist, todo */
            Type6(_) => 6,
            Type10(_) => 10,
            Type16(_) => 16,
        }
    }

    pub fn into_obj(self)
    -> Vec<lopdf::Object>
    {
        use std::iter::FromIterator;
        vec![Dictionary(lopdf::Dictionary::from_iter(vec![
                    ("Type", "Halftone".into()),
                    ("HalftoneType", self.get_type().into())
            ]))]
    }
}

/// Spot functions, Table 6.1, Page 489 in Pdf Reference v1.7
/// The code is pseudo code, returning the grey component at (x, y).
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum SpotFunction {
    /// `1 - (pow(x, 2) + pow(y, 2))`
    SimpleDot,
    /// `pow(x, 2) + pow(y, 2) - 1`
    InvertedSimpleDot,
    /// `(sin(360 * x) / 2) + (sin(360 * y) / 2)`
    DoubleDot,
    /// `- ((sin(360 * x) / 2) + (sin(360 * y) / 2))`
    InvertedDoubleDot,
    /// `(cos(180 * x) / 2) + (cos(180 * y) / 2)`
    CosineDot,
    /// `(sin(360 x (x / 2)) / 2) + (sin(360 * y) / 2)`
    Double,
    /// `- ((sin(360 x (x / 2)) / 2) + (sin(360 * y) / 2))`
    InvertedDouble,
    /// `- abs(y)`
    Line,
    /// `x`
    LineX,
    /// `y`
    LineY,
    /// ```rust,ignore
    /// if (abs(x) + abs(y) <= 1 {
    ///     1 - (pow(x, 2) + pow(y, 2))
    /// } else {
    ///     pow((abs(x) - 1), 2) + pow((abs(y) - 1), 2) - 1
    /// }
    /// ```
    Round,
    /// ```rust,ignore
    /// let w = (3 * abs(x)) + (4 * abs(y)) - 3;
    ///
    /// if w < 0 {
    ///     1 - ((pow(x, 2) + pow((abs(y) / 0.75), 2)) / 4)
    /// } else if w > 1 {
    ///     pow((pow((1 - abs(x), 2) + (1 - abs(y)) / 0.75), 2) / 4) - 1
    /// } else {
    ///     0.5 - w
    /// }
    /// ```
    Ellipse,
    /// `1 - (pow(x, 2) + 0.9 * pow(y, 2))`
    EllipseA,
    /// `pow(x, 2) + 0.9 * pow(y, 2) - 1`
    InvertedEllipseA,
    /// `1 - sqrt(pow(x, 2) + (5 / 8) * pow(y, 2))`
    EllipseB,
    /// `1 - (0.9 * pow(x, 2) + pow(y, 2))`
    EllipseC,
    /// `0.9 * pow(x, 2) + pow(y, 2) - 1`
    InvertedEllipseC,
    /// `- max(abs(x), abs(y))`
    Square,
    /// `- min(abs(x), abs(y))`
    Cross,
    /// `(0.9 * abs(x) + abs(y)) / 2`
    Rhomboid,
    /// ```rust,ignore
    /// let t = abs(x) + abs(y);
    /// if t <= 0.75 {
    ///     1 - (pow(x, 2) + pow(y, 2))
    /// } else if t < 1.23 {
    ///     1 - (0.85 * abs(x) + abs(y))
    /// } else {
    ///     pow((abs(x) - 1), 2) + pow((abs(y) - 1), 2) - 1
    /// }
    /// ```
    Diamond,
}

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum BlendMode {
    Seperable(SeperableBlendMode),
    NonSeperable(NonSeperableBlendMode),
}

impl Into<lopdf::Object> for BlendMode {
    fn into(self)
    -> lopdf::Object {
        use self::BlendMode::*;
        use self::SeperableBlendMode::*;
        use self::NonSeperableBlendMode::*;

        let blend_mode_str = match self {
            Seperable(s) => {
                match s {
                    Normal => "Normal",
                    Multiply => "Multiply",
                    Screen => "Screen",
                    Overlay => "Overlay",
                    Darken => "Darken",
                    Lighten => "Lighten",
                    ColorDodge => "ColorDodge",
                    ColorBurn => "ColorBurn",
                    HardLight => "HardLight",
                    SoftLight => "SoftLight",
                    Difference => "Difference",
                    Exclusion => "Exclusion",
                }
            },
            NonSeperable(n) => {
                match n {
                    Hue => "Hue",
                    Saturation => "Saturation",
                    Color => "Color",
                    Luminosity => "Luminosity",
                }
            }
        };

        Name(blend_mode_str.as_bytes().to_vec())
    }
}

/// PDF Reference 1.7, Page 520, Table 7.2
/// Blending modes for objects
/// In the following reference, each function gets one new color (the thing to paint on top)
/// and an old color (the color that was already present before the object gets painted)
///
/// The function simply notes the formula that has to be applied to (`color_new`, `color_old`) in order
/// to get the desired effect. You have to run each formula once for each color channel.
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum SeperableBlendMode {
    /// Selects the source color, ignoring the old color. Default mode.
    ///
    /// `color_new`
    Normal,
    /// Multiplies the old color and source color values
    /// Note that these values have to be in the range [0.0 to 1.0] to work.
    /// The result color is always at least as dark as either of the two constituent
    /// colors. Multiplying any color with black produces black; multiplying with white
    /// leaves the original color unchanged.Painting successive overlapping objects with
    /// a color other than black or white produces progressively darker colors.
    ///
    /// `color_old * color_new`
    Multiply,
    /// Multiplies the complements of the old color and new color values, then
    /// complements the result
    /// The result color is always at least as light as either of the two constituent colors.
    /// Screening any color with white produces white; screening with black leaves the original
    /// color unchanged. The effect is similar to projecting multiple photographic slides
    /// simultaneously onto a single screen.
    ///
    /// `color_old + color_new - (color_old * color_new)`
    Screen,
    /// Multiplies or screens the colors, depending on the old color value. Source colors
    /// overlay the old color while preserving its highlights and shadows. The old color is
    /// not replaced but is mixed with the source color to reflect the lightness or darkness
    /// of the old color.
    ///
    /// TLDR: It's the inverse of HardLight
    ///
    /// ```rust,ignore
    /// if color_old <= 0.5 {
    ///     Multiply(color_new, 2 x color_old)
    /// } else {
    ///     Screen(color_new, 2 * color_old - 1)
    /// }
    /// ```
    Overlay,
    /// Selects the darker one of two colors.The old color is replaced with the
    /// new color where the new color is darker; otherwise, it is left unchanged.
    ///
    /// `min(color_old, color_new)`
    Darken,
    /// Selects the lighter one of two colors. The old color is replaced with the
    /// new color where the new color is lighter; otherwise, it is left unchanged.
    ///
    /// `max(color_old, color_new)`
    Lighten,
    /// Brightens the backdrop color to reflect the source color. Painting with
    /// black produces no changes.
    ///
    /// ```rust,ignore
    /// if color_new < 1 {
    ///     min(1, color_old / (1 - color_new))
    /// } else {
    ///     1
    /// }
    /// ```
    ColorDodge,
    /// Darkens the backdrop color to reflect the source color. Painting with
    /// white produces no change.
    ///
    /// ```rust,ignore
    /// if color_new > 0 {
    ///     1 - min(1, (1 - color_old) / color_new))
    /// } else {
    ///     0
    /// }
    /// ```
    ColorBurn,
    /// Multiplies or screens the colors, depending on the source color value. The effect is
    /// similar to shining a harsh spotlight on the old color. It's the inverse of Screen.
    ///
    /// ```rust,ignore
    /// if color_new <= 0.5 {
    ///     Multiply(color_old, 2 x color_new)
    /// } else {
    ///     Screen(color_old, 2 * color_new - 1)
    /// }
    /// ```
    HardLight,
    /// Darkens or lightens the colors, depending on the source color value.
    /// The effect is similar to shining a diffused spotlight on the backdrop.
    ///
    /// ```rust,ignore
    /// if color_new <= 0.5 {
    ///     color_old - ((1 - (2 * color_new)) * color_old * (1 - color_old))
    /// } else {
    ///     let mut dx_factor = color_old.sqrt();
    ///     if color_old <= 0.25 {
    ///         dx_factor = (((16 * color_old - 12) * color_old) + 4) * color_old;
    ///     }
    ///     color_old + ((2 * color_new) - 1) * (dx_factor - color_old)
    /// }
    /// ```
    SoftLight,
    /// Subtracts the darker of the two constituent colors from the lighter color
    /// Painting with white inverts the backdrop color; painting with black produces no change.
    ///
    /// `abs(color_old - color_new)`
    Difference,
    /// Produces an effect similar to that of the Difference mode but lower in contrast.
    /// Painting with white inverts the backdrop color; painting with black produces no change.
    ///
    /// `color_old + color_new - (2 * color_old * color_new)`
    Exclusion,
}

/// Since the nonseparable blend modes consider all color components in combination, their
/// computation depends on the blending color space in which the components are interpreted.
/// They may be applied to all multiple-component color spaces that are allowed as blending
/// color spaces (see Section 7.2.3, “Blending Color Space”).
///
/// All of these blend modes conceptually entail the following steps:
///
/// 1. Convert the backdrop and source colors from the blending color space to an intermediate
///    HSL (hue-saturation-luminosity) representation.
/// 2. Create a new color from some combination of hue, saturation, and luminosity components
///    selected from the backdrop and source colors.
/// 3. Convert the result back to the original (blending) color space.
///
/// However, the formulas given below do not actually perform these conversions. Instead,
/// they start with whichever color (backdrop or source) is providing the hue for the result;
/// then they adjust this color to have the proper saturation and luminosity.
///
/// ### For RGB color spaces
///
/// The nonseparable blend mode formulas make use of several auxiliary functions. These
/// functions operate on colors that are assumed to have red, green, and blue components.
///
/// ```rust,ignore
/// # #[macro_use] extern crate printpdf;
/// # use printpdf::Rgb;
/// # use printpdf::glob_macros::*;
/// # fn main() { /* needed for testing*/ }
/// fn luminosity(input: Rgb) -> f64 {
///     0.3 * input.r + 0.59 * input.g + 0.11 * input.b
/// }
///
/// fn set_luminosity(input: Rgb, target_luminosity: f64) -> Rgb {
///     let d = target_luminosity - luminosity(input);
///     Rgb {
///         r: input.r + d,
///         g: input.g + d,
///         b: input.b + d,
///         icc_profile: input.icc_profile,
///     }
/// }
///
/// fn clip_color(mut input: Rgb) -> Rgb {
///
///     let lum = luminosity(input);
///
///     let mut cur_r = (input.r * 1000.0) as i64;
///     let mut cur_g = (input.g * 1000.0) as i64;
///     let mut cur_b = (input.b * 1000.0) as i64;
///
///     /// min! and max! is defined in printpdf/src/glob_macros.rs
///     let mut min = min!(cur_r, cur_g, cur_b);
///     let mut max = max!(cur_r, cur_g, cur_b);
///
///     let new_min = (min as f64) / 1000.0;
///     let new_max = (max as f64) / 1000.0;
///
///     if new_min < 0.0 {
///         input.r = lum + (((input.r - lum) * lum) / (lum - new_min));
///         input.g = lum + (((input.g - lum) * lum) / (lum - new_min));
///         input.b = lum + (((input.b - lum) * lum) / (lum - new_min));
///     } else if new_max > 1.0 {
///         input.r = lum + ((input.r - lum) * (1.0 - lum) / (new_max - lum));
///         input.g = lum + ((input.g - lum) * (1.0 - lum) / (new_max - lum));
///         input.b = lum + ((input.b - lum) * (1.0 - lum) / (new_max - lum));
///     }
///
///     return input;
/// }
///
/// fn saturation(input: Rgb) -> f64 {
///     let mut cur_r = (input.r * 1000.0) as i64;
///     let mut cur_g = (input.g * 1000.0) as i64;
///     let mut cur_b = (input.b * 1000.0) as i64;
///
///     /// min! and max! is defined in printpdf/src/glob_macros.rs
///     let mut min = min!(cur_r, cur_g, cur_b);
///     let mut max = max!(cur_r, cur_g, cur_b);
///
///     let new_min = (min as f64) / 1000.0;
///     let new_max = (max as f64) / 1000.0;
///     new_max - new_min
/// }
/// ```
///
/// ### For CMYK color spaces
///
/// The C, M, and Y components are converted to their complementary R, G, and B components
/// in the usual way. The formulas above are applied to the RGB color values. The results
/// are converted back to C, M, and Y.
///
/// For the K component, the result is the K component of Cb for the Hue, Saturation, and
/// Color blend modes; it is the K component of Cs for the Luminosity blend mode.
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum NonSeperableBlendMode {
    Hue,
    Saturation,
    Color,
    Luminosity,
}

/* RI name (or ri inside a stream)*/
/// Although CIE-based color specifications are theoretically device-independent,
/// they are subject to practical limitations in the color reproduction capabilities of
/// the output device. Such limitations may sometimes require compromises to be
/// made among various properties of a color specification when rendering colors for
/// a given device. Specifying a rendering intent (PDF 1.1) allows a PDF file to set priorities
/// regarding which of these properties to preserve and which to sacrifice.
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum RenderingIntent {
    /// Colors are represented solely with respect to the light source; no
    /// correction is made for the output medium’s white point (such as
    /// the color of unprinted paper). Thus, for example, a monitor’s
    /// white point, which is bluish compared to that of a printer’s paper,
    /// would be reproduced with a blue cast. In-gamut colors are
    /// reproduced exactly; out-of-gamut colors are mapped to the
    /// nearest value within the reproducible gamut. This style of reproduction
    /// has the advantage of providing exact color matches
    /// from one output medium to another. It has the disadvantage of
    /// causing colors with Y values between the medium’s white point
    /// and 1.0 to be out of gamut. A typical use might be for logos and
    /// solid colors that require exact reproduction across different media.
    AbsoluteColorimetric,
    /// Colors are represented with respect to the combination of the
    /// light source and the output medium’s white point (such as the
    /// color of unprinted paper). Thus, for example, a monitor’s white
    /// point would be reproduced on a printer by simply leaving the
    /// paper unmarked, ignoring color differences between the two
    /// media. In-gamut colors are reproduced exactly; out-of-gamut
    /// colors are mapped to the nearest value within the reproducible
    /// gamut. This style of reproduction has the advantage of adapting
    /// for the varying white points of different output media. It has the
    /// disadvantage of not providing exact color matches from one me-
    /// dium to another. A typical use might be for vector graphics.
    RelativeColorimetric,
    /// Colors are represented in a manner that preserves or emphasizes
    /// saturation. Reproduction of in-gamut colors may or may not be
    /// colorimetrically accurate. A typical use might be for business
    /// graphics, where saturation is the most important attribute of the
    /// color.
    Saturation,
    /// Colors are represented in a manner that provides a pleasing perceptual
    /// appearance. To preserve color relationships, both in-gamut
    /// and out-of-gamut colors are generally modified from
    /// their precise colorimetric values. A typical use might be for scanned images.
    Perceptual,
}

/* ri name */
impl RenderingIntent {
    pub fn into_stream_op(self)
    -> Vec<Operation>
    {
        use self::RenderingIntent::*;
        let rendering_intent_string = match self {
            AbsoluteColorimetric => "AbsoluteColorimetric",
            RelativeColorimetric => "RelativeColorimetric",
            Saturation => "Saturation",
            Perceptual => "Perceptual",
        };

        vec![ Operation::new("ri", vec![ Name(rendering_intent_string.as_bytes().to_vec()) ]) ]
    }
}

/* RI name , only to be used in graphics state dictionary */
impl Into<lopdf::Object> for RenderingIntent {
    /// Consumes the object and converts it to an PDF object
    fn into(self)
    -> lopdf::Object
    {
        use self::RenderingIntent::*;
        let rendering_intent_string = match self {
            AbsoluteColorimetric => "AbsoluteColorimetric",
            RelativeColorimetric => "RelativeColorimetric",
            Saturation => "Saturation",
            Perceptual => "Perceptual",
        };

        Name(rendering_intent_string.as_bytes().to_vec())
    }
}

/// A soft mask is used for transparent images such as PNG with an alpha component
/// The bytes range from 0xFF (opaque) to 0x00 (transparent). The alpha channel of a
/// PNG image have to be sorted out.
/// Can also be used for Vignettes, etc.
/// Beware of color spaces!
/// __See PDF Reference Page 545__ - Soft masks
#[derive(Debug, PartialEq, Clone)]
pub struct SoftMask {
    /// The data to be used as a soft mask
    data: Vec<u8>,
    /// Bits per component (1 for black / white, 8 for greyscale, up to 16)
    bits_per_component: u8,
}

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum SoftMaskFunction {
    // (Color, Shape, Alpha) = Composite(Color0, Alpha0, Group)
    /// In this function, the old (backdrop) color does not contribute to the result.
    /// This is the easies function, but may look bad at edges.
    GroupAlpha,
    //
    GroupLuminosity,

}
/// __See PDF Reference Page 216__ - Line join style
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum LineJoinStyle {
    /// Miter join. The outer edges of the strokes for the two segments are extended
    /// until they meet at an angle, as in a picture frame. If the segments meet at too
    /// sharp an angle (as defined by the miter limit parameter—see “Miter Limit,”
    /// above), a bevel join is used instead.
    Miter,
    /// Round join. An arc of a circle with a diameter equal to the line width is drawn
    /// around the point where the two segments meet, connecting the outer edges of
    /// the strokes for the two segments. This pieslice-shaped figure is filled in, pro-
    /// ducing a rounded corner.
    Round,
    /// Bevel join. The two segments are finished with butt caps (see “Line Cap Style”
    /// on page 216) and the resulting notch beyond the ends of the segments is filled
    /// with a triangle.
    Limit,
}

impl Into<i64> for LineJoinStyle {
    fn into(self)
    -> i64
    {
        use self::LineJoinStyle::*;
        match self {
            Miter => 0,
            Round => 1,
            Limit => 2,
        }
    }
}

impl Into<Operation> for LineJoinStyle {
    fn into(self)
    -> Operation
    {
        let line_join_num: i64 = self.into();
        Operation::new("j", vec![Integer(line_join_num)])
    }
}

impl Into<lopdf::Object> for LineJoinStyle {
    fn into(self)
    -> lopdf::Object
    {
        Integer(self.into())
    }
}

/// __See PDF Reference (Page 216)__ - Line cap (ending) style
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum LineCapStyle {
    /// Butt cap. The stroke is squared off at the endpoint of the path. There is no
    /// projection beyond the end of the path.
    Butt,
    /// Round cap. A semicircular arc with a diameter equal to the line width is
    /// drawn around the endpoint and filled in.
    Round,
    /// Projecting square cap. The stroke continues beyond the endpoint of the path
    /// for a distance equal to half the line width and is squared off.
    ProjectingSquare,
}

impl Into<i64> for LineCapStyle {
    fn into(self)
    -> i64
    {
        use self::LineCapStyle::*;
        match self {
            Butt => 0,
            Round => 1,
            ProjectingSquare => 2,
        }
    }
}

impl Into<Operation> for LineCapStyle {
    fn into(self)
    -> Operation
    {
        Operation::new("J", vec![Integer(self.into())])
    }
}

impl Into<lopdf::Object> for LineCapStyle {
    fn into(self)
    -> lopdf::Object
    {
        Integer(self.into())
    }
}

/// Line dash pattern is made up of a total width
#[derive(Debug, PartialEq, Copy, Clone)]
pub struct LineDashPattern {
    /// Offset at which the dashing pattern should start, measured from the beginning ot the line
    /// Default: 0 (start directly where the line starts)
    pub offset: i64,
    /// Length of the first dash in the dash pattern. If `None`, the line will be solid (good for resetting the dash pattern)
    pub dash_1: Option<i64>,
    /// Whitespace after the first dash. If `None`, whitespace will be the same as length_1st,
    /// meaning that the line will have dash - whitespace - dash - whitespace in even offsets
    pub gap_1: Option<i64>,
    /// Length of the second dash in the dash pattern. If None, will be equal to length_1st
    pub dash_2: Option<i64>,
    /// Same as whitespace_1st, but for length_2nd
    pub gap_2: Option<i64>,
    /// Length of the second dash in the dash pattern. If None, will be equal to length_1st
    pub dash_3: Option<i64>,
    /// Same as whitespace_1st, but for length_3rd
    pub gap_3: Option<i64>,
}

impl LineDashPattern {
    /// Creates a new dash pattern
    pub fn new(offset: i64, dash_1: Option<i64>, gap_1: Option<i64>, dash_2: Option<i64>, gap_2: Option<i64>, dash_3: Option<i64>, gap_3: Option<i64>)
    -> Self
    {
        Self { offset, dash_1, gap_1, dash_2, gap_2, dash_3, gap_3 }
    }

    /// Creates a new dash pattern
    pub fn default()
    -> Self
    {
        Self { offset: 0, dash_1: None, gap_1: None, dash_2: None, gap_2: None, dash_3: None, gap_3: None }
    }
}

// conversion into a dash array for reuse in operation / gs dictionary
impl Into<(Vec<i64>, i64)> for LineDashPattern {
    #[cfg_attr(feature = "cargo-clippy", allow(never_loop))]
    #[cfg_attr(feature = "cargo-clippy", allow(while_let_loop))]
    #[cfg_attr(feature = "cargo-clippy", allow(needless_return))]
    fn into(self)
    -> (Vec<i64>, i64)
    {
        let mut dash_array = Vec::<i64>::new();

        // note: it may be that PDF allows more than 6 operators.
        // I've not seen it in practise, though

        // break as soon as we encounter a None
        loop {

            if let Some(d1) = self.dash_1 {
                dash_array.push(d1);
            } else { break; }

            if let Some(g1) = self.gap_1 {
                dash_array.push(g1);
            } else { break; }

            if let Some(d2) = self.dash_2 {
                dash_array.push(d2);
            } else { break; }

            if let Some(g2) = self.gap_2 {
                dash_array.push(g2);
            } else { break; }

            if let Some(d3) = self.dash_3 {
                dash_array.push(d3);
            } else { break; }

            if let Some(g3) = self.gap_3 {
                dash_array.push(g3);
            } else { break; }

            break;
        }

        return (dash_array, self.offset);
    }

}

impl Into<Operation> for LineDashPattern {
    fn into(self)
    -> Operation
    {
        let (dash_array, offset) = self.into();
        let dash_array_ints = dash_array.into_iter().map(Integer).collect();
        Operation::new("d", vec![Array(dash_array_ints), Integer(offset)])
    }
}

impl Into<lopdf::Object> for LineDashPattern {
    fn into(self)
    -> lopdf::Object
    {
        use lopdf::Object::*;
        let (dash_array, offset) = self.into();
        let mut dash_array_ints: Vec<lopdf::Object> = dash_array.into_iter().map(Integer).collect();
        dash_array_ints.push(Integer(offset));
        Array(dash_array_ints)
    }
}