1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
//! Implements core functionality of the prime factorization.
//!
//! The complete factorization algorithm consists of
//! - Trial division with the first 1006 primes.
//! - Fermat's factorization method, useful if the integer is of the form n=(a+b)*(a-b).
//! - Primality test, consisting of Miller-Rabin and strong Baillie-PSW tests.
//! - Lenstra elliptic-curve factorization with multiple of OS threads. Module `elliptic`
//! implements elliptic curve arithmetic needed during factorization.
//!
//! Constants `MAX_THREADS_` define the maximal thread counts. These values must be at least two and preferably
//! below the number of CPU cores. In terms of performance, lower value (2-5) seems to be the best but large
//! 128 bit semiprimes could be factorized faster with larger thread count based on benchmarking.
//!
//! First thread will actually run wheel factorization targeting smaller prime factors whereas other threads
//! run the actual elliptic-curve factorization method. Thus, if the thread count has been set to one,
//! only the wheel factorization will run.
//!
//! Factorization algorithm stops when the factored number equals one.
//!
use std::cmp::Ordering;
use std::fmt::{Display, Formatter, Result};
use std::sync::{mpsc, Arc, Mutex};
use std::thread;

use num::integer;

use crate::{arith::Arith, elliptic::EllipticCurve, prime, UInt};

/// Thread count for elliptic curve factorization. Currently, optimal count seems to be between 2 and 5.
const MAX_THREADS_SMALL: usize = 2;
const MAX_THREADS_LARGE: usize = 3;

/// Max count of elliptic curves during single elliptic factorization run.
const MAX_ELLIPTIC_CURVES: usize = 125;

const SMALL_PRIMES_COUNT: usize = 1006;
/// First 1006 primes as 32 bit unsigned integers.
static SMALL_PRIMES: [u32; SMALL_PRIMES_COUNT] = [
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
    197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
    311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421,
    431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547,
    557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
    661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929,
    937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039,
    1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153,
    1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279,
    1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409,
    1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499,
    1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613,
    1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741,
    1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873,
    1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999,
    2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113,
    2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251,
    2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371,
    2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477,
    2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647,
    2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731,
    2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857,
    2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001,
    3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163,
    3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299,
    3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407,
    3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539,
    3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659,
    3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793,
    3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919,
    3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051,
    4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201,
    4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327,
    4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463,
    4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603,
    4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733,
    4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903,
    4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009,
    5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153,
    5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303,
    5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441,
    5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569,
    5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701,
    5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843,
    5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987,
    6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131,
    6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269,
    6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373,
    6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553,
    6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691,
    6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829,
    6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967,
    6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109,
    7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247,
    7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451,
    7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559,
    7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687,
    7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841,
    7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963,
];

struct MaybeFactors<T: UInt> {
    num: T,
    factors: Vec<(T, bool)>,
}

#[derive(Debug)]
pub struct Factorization<T: UInt> {
    pub num: T,
    pub is_prime: bool,
    pub factors: Vec<T>,
}

impl<T: 'static + UInt> Factorization<T> {
    /// Factorize a positive natural number `num` to its prime factors.
    ///
    /// After the call, `factors` field of the struct contains
    /// all the prime factors, smallest prime being the first
    /// element in the container. Field `num` has the original number
    /// and field `is_prime` indicates whether the number is prime.
    ///
    /// # Examples
    ///
    /// Factorize natural number 1729
    ///
    /// ```
    /// use prime_factorization::Factorization;
    ///
    /// let factor_repr = Factorization::<u32>::run(1729);
    ///
    /// assert_eq!(factor_repr.factors, vec![7, 13, 19]);
    /// ```
    ///
    /// Check whether 1801 is a prime number (no other factors than it itself)
    ///
    /// ```
    /// use prime_factorization::Factorization;
    ///
    /// let num = 1801u32;
    /// let factor_repr = Factorization::run(num);
    ///
    /// assert_eq!(factor_repr.is_prime, true);
    ///
    /// assert_eq!(factor_repr.factors, vec![num]);
    /// ```
    pub fn run(num: T) -> Self {
        let mut factorization = Factorization {
            num,
            is_prime: false,
            factors: Vec::<T>::new(),
        };

        if num <= T::one() {
            return factorization;
        }

        let num = factorization.factorize_trial(num);
        factorization.factorize_until_completed(num);

        if factorization.factors.len() > 1 {
            factorization.prune_duplicate_factors();
        } else {
            factorization.is_prime = true;
        }

        factorization
    }

    /// Get the prime factor representation for the natural number `num`:
    /// num = prm_1^k_1 * prm_2^k_2 * ... * prm_n^k_n.
    ///
    /// Representation is returned such that each element of the container
    /// is a tuple with the prime factor `prm_i` and its count `k_i` as
    /// its two elements, ordered s.t. the first tuple has the smallest prime.
    ///
    /// This method assumes that the `factors` field has the correct prime
    /// factors sorted from smallest to largest and as such the representation
    /// can be directly produced from them.
    ///
    /// Hence, always call the `run` associated function first.
    ///
    /// # Examples
    ///
    /// ```
    /// use prime_factorization::Factorization;
    ///
    /// let num = 491_520u32;
    ///
    /// // Run first the factorization, which is 2^15 * 3 * 5 for `num`
    /// let factor_repr = Factorization::run(num);
    ///
    /// assert_eq!(factor_repr.prime_factor_repr(), vec![(2, 15), (3, 1), (5, 1)]);
    /// ```
    pub fn prime_factor_repr(&self) -> Vec<(T, u32)> {
        let mut prm_factor_repr = Vec::<(T, u32)>::new();

        let mut k = self.num;
        let mut count = 0;
        let mut prev_factor = T::zero();

        for factor in self.factors.iter().rev() {
            let curr_factor = *factor;

            if curr_factor != prev_factor && count > 0 {
                prm_factor_repr.push((prev_factor, count));
                count = 0;
            }

            count += 1;
            k = k / curr_factor;

            prev_factor = curr_factor;

            if k == T::one() {
                prm_factor_repr.push((prev_factor, count));
                break;
            }
        }
        prm_factor_repr.reverse();

        prm_factor_repr
    }

    fn factorize_trial(&mut self, mut num: T) -> T {
        for prm in SMALL_PRIMES.iter() {
            let prime = (*prm).into();

            while num % prime == T::zero() {
                self.factors.push(prime);
                num = num / prime;
            }

            if num == T::one() {
                break;
            }
        }

        num
    }

    fn factorize_until_completed(&mut self, mut num: T) {
        while num > T::one() {
            num = self.factorize_fermat(num, 2);

            if num == T::one() {
                break;
            }

            if prime::is_odd_prime_factor(num) {
                self.factors.push(num);
                break;
            }

            num = self.factorize_elliptic(num);
        }
    }

    fn factorize_fermat(&mut self, num: T, level: usize) -> T {
        let mut a = integer::sqrt(num);
        let mut a_square = T::trunc_square(a);

        if a_square == num {
            if prime::is_odd_prime_factor(a) {
                for _ in 0..level {
                    self.factors.push(a);
                }
                return T::one();
            }
            // a not yet prime, start recursive search
            let mut num_back = self.factorize_fermat(a, level << 1);

            if num_back > T::one() {
                // Factoring not completed, return the original num
                num_back = num;
            }
            return num_back;
        }

        a = a + T::one();
        a_square = T::trunc_square(a);

        if a_square == T::zero() {
            return num;
        }

        for _ in 0..10 {
            let b_square = a_square - num;
            let b = integer::sqrt(b_square);

            if T::trunc_square(b) == b_square {
                let rounds = level >> 1;

                for _ in 0..rounds {
                    self.factors.push(a - b);
                    self.factors.push(a + b);
                }
                return T::one();
            }

            a = a + T::one();
            a_square = T::trunc_square(a);

            if a_square == T::zero() {
                return num;
            }
        }

        num
    }

    fn factorize_elliptic(&mut self, mut num: T) -> T {
        let mut ec_factors: Vec<(T, bool)> = Vec::new();

        num = self.spawn_and_run(num, &mut ec_factors);

        for (ec_factor, is_sure_prime) in ec_factors {
            if is_sure_prime || prime::is_odd_prime_factor(ec_factor) {
                self.factors.push(ec_factor);
            } else {
                // Factor is a power of prime or product of several primes
                let mut factorization_inner = Factorization {
                    num: ec_factor,
                    is_prime: false,
                    factors: Vec::<T>::new(),
                };

                factorization_inner.factorize_until_completed(ec_factor);

                for new_factor in factorization_inner.factors {
                    self.factors.push(new_factor);
                }
            }
        }

        num
    }

    fn spawn_and_run(&self, num: T, factors: &mut Vec<(T, bool)>) -> T {
        let (sender, receiver) = mpsc::channel();

        let maybe_factors_mtx = Arc::new(Mutex::new(MaybeFactors {
            num,
            factors: Vec::new(),
        }));

        let max_threads = if num.into() <= u64::MAX as u128 {
            MAX_THREADS_SMALL
        } else {
            MAX_THREADS_LARGE
        };

        for thread in 0..max_threads {
            let sender = sender.clone();
            let maybe_factors_mtx_clone = Arc::clone(&maybe_factors_mtx);

            thread::spawn(move || {
                if thread == 0 {
                    // Try to find smaller factors with wheel factorization
                    Self::wheel_runner(maybe_factors_mtx_clone, num, sender);
                } else {
                    Self::elliptic_runner(maybe_factors_mtx_clone, num, sender);
                }
            });
        }

        match receiver.recv() {
            Ok(completed) => {
                let maybe_factors_guard = match maybe_factors_mtx.lock() {
                    Ok(mtx_guard) => mtx_guard,
                    _ => {
                        eprintln!("Error: maybe_factors_mtx.lock() panicked.");
                        return num;
                    }
                };

                for tuple in maybe_factors_guard.factors.iter() {
                    factors.push(*tuple);
                }

                if completed {
                    T::one()
                } else {
                    maybe_factors_guard.num
                }
            }
            Err(_) => {
                eprintln!("Error: all elliptic threads disconnected, channel closed.");

                let maybe_factors_guard = maybe_factors_mtx.lock().unwrap();

                for tuple in maybe_factors_guard.factors.iter() {
                    factors.push(*tuple);
                }

                maybe_factors_guard.num
            }
        }
    }

    fn elliptic_runner(
        maybe_factors: Arc<Mutex<MaybeFactors<T>>>,
        mut num: T,
        sender: mpsc::Sender<bool>,
    ) {
        let mut curve_count = 1;

        while num > T::one() && curve_count <= MAX_ELLIPTIC_CURVES {
            let maybe_factor = EllipticCurve::compute_maybe_factor_from_curve(num);

            if maybe_factor > T::one() && maybe_factor < num {
                let mut factors_guard = match maybe_factors.lock() {
                    Ok(mtx_guard) => mtx_guard,
                    _ => {
                        curve_count += 1;
                        continue;
                    }
                };

                if maybe_factor > factors_guard.num {
                    num = factors_guard.num;
                } else {
                    num = num / maybe_factor;
                    factors_guard.num = num;
                    factors_guard.factors.push((maybe_factor, false));

                    if prime::is_odd_prime_factor(num) {
                        factors_guard.factors.push((num, true));
                        num = T::one();
                        factors_guard.num = num;
                    }
                }
            } else if maybe_factor == num && prime::is_odd_prime_factor(maybe_factor) {
                let mut factors_guard = match maybe_factors.lock() {
                    Ok(mtx_guard) => mtx_guard,
                    _ => {
                        curve_count += 1;
                        continue;
                    }
                };

                if maybe_factor == factors_guard.num {
                    num = T::one();
                    factors_guard.num = num;
                    factors_guard.factors.push((maybe_factor, true));
                } else {
                    num = factors_guard.num;
                }
            } else if curve_count & 31 == 0 {
                // Update factored number `num`
                if let Ok(mtx_guard) = maybe_factors.lock() {
                    num = mtx_guard.num;
                }
            }

            curve_count += 1;
        }

        if sender.send(num == T::one()).is_err() {}
    }

    fn wheel_runner(
        maybe_factors: Arc<Mutex<MaybeFactors<T>>>,
        mut num: T,
        sender: mpsc::Sender<bool>,
    ) {
        // Use basis {2, 3, 5, 7}
        let wheel_inc: [u32; 48] = [
            2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6,
            2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10,
        ];

        let mut k = 7991.into(); // Start search from 1007th prime 7993

        for wheel in wheel_inc.iter().cycle() {
            k = k + (*wheel).into();

            if k > num / k {
                if let Ok(mut factors_guard) = maybe_factors.lock() {
                    factors_guard.factors.push((num, false));
                    num = T::one();
                    factors_guard.num = num;
                }
                break;
            }

            if num % k == T::zero() {
                let mut factors_guard = match maybe_factors.lock() {
                    Ok(mtx_guard) => mtx_guard,
                    _ => break,
                };

                if k > factors_guard.num || factors_guard.factors.iter().any(|&e| e.0 == k) {
                    // Maybe factor `k` already larger than the active number or it has already been found
                    num = factors_guard.num;
                    break;
                }

                loop {
                    num = num / k;

                    factors_guard.num = num;
                    factors_guard.factors.push((k, true));

                    if num % k != T::zero() {
                        break;
                    }
                }
            }
        }

        if sender.send(num == T::one()).is_err() {}
    }

    fn prune_duplicate_factors(&mut self) {
        self.factors.sort();

        let mut unique_factors: Vec<T> = vec![];
        let mut k = self.num;

        for factor in self.factors.iter().rev() {
            if k % *factor == T::zero() {
                unique_factors.push(*factor);
                k = k / *factor;
            }
        }

        unique_factors.reverse();
        self.factors = unique_factors;
    }
}

impl<T: UInt> Display for Factorization<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        let flen = self.factors.len();

        match flen.cmp(&1) {
            Ordering::Less => write!(f, "Not factorized yet!"),
            Ordering::Equal => write!(f, "factors: {}", self.factors[0]),
            Ordering::Greater => {
                let k = self.factors.len() - 1;
                let str_prefix = self
                    .factors
                    .iter()
                    .take(k)
                    .fold(String::new(), |acc, &e| acc + &e.to_string() + ", ");

                write!(f, "factors: {}{}", str_prefix, self.factors[k])
            }
        }
    }
}

#[cfg(test)]
mod tests;