1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
//! Module for factorizing integers
pub mod candidates;

use std::cmp::{min, Ordering};
use std::convert::From;
use std::fmt;
use genawaiter::stack::let_gen_using;
use candidates::prime_wheel_30;
use num::integer::Roots;

#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct IntFactor {
    pub integer: u128,
    pub exponent: u32,
}

impl IntFactor {
    pub fn to_vec(&self) -> Vec<u128> {
        vec![self.integer; self.exponent as usize]
    }
}

impl fmt::Display for IntFactor {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.exponent > 1 {
            write!(f, "{}^{}", self.integer, self.exponent)
        } else {
            write!(f, "{}", self.integer)
        }
    }
}

#[derive(Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct PrimeFactors {
    factors: Vec<IntFactor>
}

impl PrimeFactors {
    fn new() -> Self {
        PrimeFactors { factors: Vec::with_capacity(8) }
    }
    fn add(&mut self, integer: u128, exponent: u32) {
        self.factors.push(IntFactor { integer, exponent })
    }
    pub fn value(&self) -> u128 {
        self.factors.iter().map(|f| f.integer.pow(f.exponent)).product()
    }
    pub fn len(&self) -> usize {
        self.factors.len()
    }
    pub fn count_factors(&self) -> u32 {
        self.factors.iter().map(|f| f.exponent).sum()
    }
    pub fn is_empty(&self) -> bool {
        self.factors.is_empty()
    }
    pub fn is_prime(&self) -> bool {
        self.count_factors() == 1
    }
    pub fn to_factor_vec(&self) -> &Vec<IntFactor> {
        &self.factors
    }
    pub fn to_vec(&self) -> Vec<u128> {
        let mut ret = Vec::new();
        self.factors.iter().for_each(|f| ret.extend(f.to_vec()));
        ret
    }
    pub fn gcd(&self, other: &PrimeFactors) -> PrimeFactors {
        let mut pf = PrimeFactors::new();
        if self.is_empty() || other.is_empty() { return pf; }
        let mut s_it = self.factors.iter();
        let mut o_it = other.factors.iter();
        let mut s = s_it.next().unwrap();
        let mut o = o_it.next().unwrap();
        loop {
            let prime_cmp = s.integer.cmp(&o.integer);
            if prime_cmp == Ordering::Equal {
                pf.add(s.integer, min(o.exponent, s.exponent));
            }
            match prime_cmp {
                Ordering::Less | Ordering::Equal => {
                    if let Some(n) = s_it.next() { s = n; } else { break; }
                },
                Ordering::Greater => {
                    if let Some(n) = o_it.next() { o = n; } else { break; }
                },
            }
        }
        pf
    }
}

impl From<u128> for PrimeFactors {
    fn from(n: u128) -> Self {
        let mut pf = PrimeFactors::new();
        if n < 2 { return pf; }
        // A factor of n must have a value less than or equal to sqrt(n)
        let mut maxf = n.sqrt() + 1;
        let_gen_using!(mpgen, prime_wheel_30);
        let mut x = n;
        for f in mpgen.into_iter() {
            if f >= maxf {
                break;
            }
            let mut c = 0;
            while x % f == 0 {
                x /= f;
                c += 1;
            }
            if c > 0 {
                // A factor of x must have a value less than or equal to sqrt(x)
                maxf = x.sqrt() + 1;
                pf.add(f, c);
            }
            if x == 1 {
                break;
            }
        }
        if x > 1 || pf.is_empty() {
            // Any remainder must be the number itself or a factor of it.
            pf.add(x, 1);
        }
        pf
    }
}

impl fmt::Display for PrimeFactors {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let parts: Vec<_> = self.factors.iter()
            .map(|f| f.to_string())
            .collect();
        write!(f, "{}", parts.join(" * "))
    }
}

/// IntFactor interator
impl<'a> IntoIterator for &'a PrimeFactors {
    type Item = &'a IntFactor; // Items yielded by the iterator will be references
    type IntoIter = std::slice::Iter<'a, IntFactor>; // Use a slice iterator

    fn into_iter(self) -> Self::IntoIter {
        self.factors.iter()  // Create a standard slice iterator
    }
}

/// Test if the value is a prime number, or not
pub fn u128_is_prime(n: u128) -> bool {
    if n < 2 { return false; }
    if n > 30 {
        // check spoke in the prime wheel (base 30)
        match n % 30 {
            1|7|11|13|17|19|23|29 => (), // may be prime
            _ => return false, // cannot be prime
        }
    }
    // A factor of n must have a value less than or equal to sqrt(n)
    let maxf = n.sqrt() + 1;
    let_gen_using!(mpgen, prime_wheel_30);
    for f in mpgen.into_iter() {
        if f >= maxf {
            break;
        }
        if n % f == 0 {
            return false;
        }
    }
    true
}

/// Calculate the Greatest common divisor (GCD) between 2 unsigned integers
pub fn primefactor_gcd(this: u128, that: u128) -> PrimeFactors {
    let pf_this = PrimeFactors::from(this);
    let pf_that = PrimeFactors::from(that);
    pf_this.gcd(&pf_that)
}

/// Calculate the Greatest common divisor (GCD) between 2 unsigned integers.
/// Based on Euclid's algorithm pseudo code at:
/// https://en.wikipedia.org/wiki/Euclidean_algorithm
pub fn u128_gcd(this: u128, that: u128) -> u128 {
    let mut a = this;
    let mut b = that;
    while b > 0 {
        let c = b;
        b = a % b;
        a = c;
    }
    a
}

/// Calculate the Least common multiple (LCM) for 2 integers
pub fn u128_lcm(this: u128, that: u128) -> u128 {
    if this == 0 && that == 0 { return 0; }
    let gcd = u128_gcd(this, that);
    this * that / gcd
}