1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//! Module for factorizing integers
use std::cmp::{min, Ordering};
use std::convert::From;
use std::fmt;
use genawaiter::yield_;
use genawaiter::stack::{let_gen_using, producer_fn};

/// A generator for possibly prime number
#[producer_fn(u128)]
async fn maybe_prime_gen() {
    yield_!(2);
    yield_!(3);
    yield_!(5); // must not skip the initial 5
    let mut accum = 7u128;
    loop {
        /* Numbers ending in 5's occur with a periodicity of 10,
         * at positions 6 and 9 when starting from 7, forming the
         * end-digit pattern: 7, 1, 3, 7, 9, 3, 5, 9, 1, 5, ... */
        for i in 0..10 {
            match i {
                6|9 => (), // skip numbers ending in 5
                _ => yield_!(accum),
            }
            /* All primes except 2 and 3 are congruent modulo 6 to one of 1 or 5. */
            accum += 2 * (1 - (i&1)) + 2; // alternate between adding 2 and 4
        }
    }
}

#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct IntFactor {
    pub integer: u128,
    pub exponent: u32,
}

impl IntFactor {
    pub fn to_vec(&self) -> Vec<u128> {
        vec![self.integer; self.exponent as usize]
    }
}

impl fmt::Display for IntFactor {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.exponent > 1 {
            write!(f, "{}^{}", self.integer, self.exponent)
        } else {
            write!(f, "{}", self.integer)
        }
    }
}

#[derive(Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct PrimeFactors {
    factors: Vec<IntFactor>
}

impl PrimeFactors {
    fn new() -> Self {
        PrimeFactors { factors: Vec::new() }
    }
    fn add(&mut self, integer: u128, exponent: u32) {
        self.factors.push(IntFactor { integer, exponent })
    }
    pub fn value(&self) -> u128 {
        self.factors.iter().map(|f| f.integer.pow(f.exponent)).product()
    }
    pub fn len(&self) -> usize {
        self.factors.len()
    }
    pub fn count_factors(&self) -> u32 {
        self.factors.iter().map(|f| f.exponent).sum()
    }
    pub fn is_empty(&self) -> bool {
        self.factors.is_empty()
    }
    pub fn is_prime(&self) -> bool {
        self.count_factors() == 1
    }
    pub fn iter(&self) -> PrimeFactorsIter {
        PrimeFactorsIter { vec: &self.factors, ndx: 0 }
    }
    pub fn to_factor_vec(&self) -> &Vec<IntFactor> {
        &self.factors
    }
    pub fn to_vec(&self) -> Vec<u128> {
        let mut ret = Vec::new();
        self.factors.iter().for_each(|f| ret.extend(f.to_vec()));
        ret
    }
    pub fn gcd(&self, other: &PrimeFactors) -> PrimeFactors {
        let mut pf = PrimeFactors::new();
        if self.is_empty() || other.is_empty() { return pf; }
        let mut s_it = self.factors.iter();
        let mut o_it = other.factors.iter();
        let mut s = s_it.next().unwrap();
        let mut o = o_it.next().unwrap();
        loop {
            let prime_cmp = s.integer.cmp(&o.integer);
            if prime_cmp == Ordering::Equal {
                pf.add(s.integer, min(o.exponent, s.exponent));
            }
            match prime_cmp {
                Ordering::Less | Ordering::Equal => {
                    if let Some(n) = s_it.next() { s = &n; } else { break; }
                },
                Ordering::Greater => {
                    if let Some(n) = o_it.next() { o = &n; } else { break; }
                },
            }
        }
        pf
    }
}

impl From<u128> for PrimeFactors {
    fn from(n: u128) -> Self {
        let mut pf = PrimeFactors::new();
        if n < 2 { return pf; }
        // A factor of n must have a value less than or equal to sqrt(n)
        let mut maxf = u128_sqrt(n) + 1;
        let_gen_using!(mpgen, maybe_prime_gen);
        let mut x = n;
        for f in mpgen.into_iter() {
            if f >= maxf {
                break;
            }
            let mut c = 0;
            while x % f == 0 {
                x /= f;
                c += 1;
            }
            if c > 0 {
                // A factor of x must have a value less than or equal to sqrt(x)
                maxf = u128_sqrt(x) + 1;
                pf.add(f, c);
            }
            if x == 1 {
                break;
            }
        }
        if x > 1 || pf.is_empty() {
            // Any remainder must be the number itself or a factor of it.
            pf.add(x, 1);
        }
        pf
    }
}

impl fmt::Display for PrimeFactors {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let parts: Vec<_> = self.factors.iter()
            .map(|f| f.to_string())
            .collect();
        write!(f, "{}", parts.join(" * "))
    }
}

/// IntFactor interator
pub struct PrimeFactorsIter<'a> {
    vec: &'a Vec<IntFactor>,
    ndx: usize,
}

impl<'a> Iterator for PrimeFactorsIter<'a> {
    type Item = IntFactor;

    fn next(&mut self) -> Option<IntFactor> {
        if self.ndx >= self.vec.len() { return None; }
        let pf = self.vec[self.ndx];
        self.ndx += 1;
        Some(pf)
    }
}

impl<'a> IntoIterator for &'a PrimeFactors {
    type Item = IntFactor;
    type IntoIter = PrimeFactorsIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        PrimeFactorsIter {
            vec: &self.factors,
            ndx: 0,
        }
    }
}

/// Unsigned 128-bit integer square root calculation.
/// Based on example implementation in C at:
/// https://en.wikipedia.org/wiki/Integer_square_root
pub fn u128_sqrt(s: u128) -> u128 {
    let mut g = s >> 1; // Initial guess
    if g == 0 { return s; } // sanity check
    let mut u = (g + s / g) >> 1; // update
    while u < g { // this also checks for cycle
        g = u;
        u = (g + s / g) >> 1;
    }
    g
}

/// Test if the value is a prime number, or not
pub fn u128_is_prime(n: u128) -> bool {
    if n < 2 { return false; }
    // A factor of n must have a value less than or equal to sqrt(n)
    let maxf = u128_sqrt(n) + 1;
    let_gen_using!(mpgen, maybe_prime_gen);
    for f in mpgen.into_iter() {
        if f >= maxf {
            break;
        }
        if n % f == 0 {
            return false;
        }
    }
    true
}

/// Calculate the Greatest common divisor (GCD) between 2 unsigned integers
pub fn primefactor_gcd(this: u128, that: u128) -> PrimeFactors {
    let pf_this = PrimeFactors::from(this);
    let pf_that = PrimeFactors::from(that);
    pf_this.gcd(&pf_that)
}

/// Calculate the Greatest common divisor (GCD) between 2 unsigned integers.
/// Based on Euclid's algorithm pseudo code at:
/// https://en.wikipedia.org/wiki/Euclidean_algorithm
pub fn u128_gcd(this: u128, that: u128) -> u128 {
    let mut a = this;
    let mut b = that;
    while b > 0 {
        let c = b;
        b = a % b;
        a = c;
    }
    a
}

/// Calculate the Least common multiple (LCM) for 2 integers
pub fn u128_lcm(this: u128, that: u128) -> u128 {
    if this == 0 && that == 0 { return 0; }
    let gcd = u128_gcd(this, that);
    this * that / gcd
}

#[cfg(test)]
mod tests {
    #[allow(unused_imports)]
    use crate::*;
    use rand::Rng;
    use genawaiter::stack::let_gen_using;
    
    #[test]
    fn test_early_maybe_prime_numbers() {
        let testvec = vec![
            2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59,
            61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113
        ];
        let_gen_using!(mpgen, maybe_prime_gen);
        let mut mp = mpgen.into_iter();
        for i in 0..testvec.len() {
            let p = mp.next().unwrap();
            assert_eq!(testvec[i], p);
        }
    }

    #[test]
    fn test_maybe_prime_quality() {
        let mut primes: u128 = 0;
        let mut others: u128 = 0;
        let_gen_using!(mpgen, maybe_prime_gen);
        let mut mp = mpgen.into_iter();
        for _ in 0..1000000 {
            let p = mp.next().unwrap();
            if u128_is_prime(p) {
                primes += 1;
            } else {
                others += 1;
            }
        }
        let percent = primes as f64 / (primes + others) as f64 * 100.0;
        println!("Maybe prime generated {}/{} ({:.3}%) primes",
                 primes, primes+others, percent);
        assert!(percent > 25.0);
    }

    #[test]
    fn test_int_sqrt_pow_of_2() {
        let mut rnd = rand::thread_rng();
        for _ in 1..1000 {
            let n = rnd.gen_range(1..u128_sqrt(u128::MAX));
            let sqrt = u128_sqrt(n.pow(2));
            assert_eq!(sqrt, n);
        }
    }

    #[test]
    fn test_int_sqrt_floor() {
        let mut rnd = rand::thread_rng();
        for _ in 1..1000 {
            // Largest integer in a f64 is 2^53-1 (52 bits mantissa)
            let n = rnd.gen_range(1..u64::pow(2, 53) as u128);
            let expt = f64::sqrt(n as f64) as u128;
            let sqrt = u128_sqrt(n);
            assert_eq!(sqrt, expt);
        }
    }
}