1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
//! Sieve small numbers.
//!
//! This is designed to be used via the `primal` crate.

#![cfg_attr(all(test, feature = "unstable"), feature(test))]
#[cfg(all(test, feature = "unstable"))] extern crate test;
extern crate primal_bit;
extern crate primal_estimate;

use primal_bit::BitVec;
use std::{iter, cmp};

/// Stores information about primes up to some limit.
///
/// This uses at least `limit / 16 + O(1)` bytes of storage.
#[derive(Debug)]
pub struct Primes {
    // This only stores odd numbers, since even numbers are mostly
    // non-prime.
    //
    // This indicates which numbers are composite.
    v: BitVec
}

/// Iterator over the primes stored in a sieve.
#[derive(Clone)]
pub struct PrimeIterator<'a> {
    two: bool,
    iter: iter::Enumerate<primal_bit::Iter<'a>>,
}

impl Primes {
    /// Construct a `Primes` via a sieve up to at least `limit`.
    ///
    /// This stores all primes less than `limit` (and possibly some
    /// more), allowing for very efficient iteration and primality
    /// testing below this, and guarantees that all numbers up to
    /// `limit^2` can be factorised.
    pub fn sieve(limit: usize) -> Primes {
        // having this out-of-line like this is faster (130 us/iter
        // vs. 111 us/iter on sieve_large), and using a manual while
        // rather than a `range_step` is a similar speedup.
        #[inline(never)]
        fn filter(is_prime: &mut BitVec, limit: usize, p: usize) {
            let mut zero = p * p / 2;
            while zero < limit / 2 {
                is_prime.set(zero, true);
                zero += p;
            }
        }

        // bad stuff happens for very small bounds.
        let limit = cmp::max(10, limit);

        let mut is_prime = BitVec::from_elem((limit + 1) / 2, false);
        // 1 isn't prime
        is_prime.set(0, true);

        // multiples of 3 aren't prime (3 is handled separately, so
        // the ticking works properly)
        filter(&mut is_prime, limit, 3);

        let bound = (limit as f64).sqrt() as usize + 1;
        // skip 2.
        let mut check = 2;
        let mut tick = if check % 3 == 1 {2} else {1};

        while check <= bound {
            if !is_prime[check] {
                filter(&mut is_prime, limit, 2 * check + 1)
            }

            check += tick;
            tick = 3 - tick;
        }

        Primes { v: is_prime }
    }

    /// The largest number stored.
    pub fn upper_bound(&self) -> usize {
        (self.v.len() - 1) * 2 + 1
    }

    /// Check if `n` is prime, possibly failing if `n` is larger than
    /// the upper bound of this Primes instance.
    pub fn is_prime(&self, n: usize) -> bool {
        if n % 2 == 0 {
            // 2 is the evenest prime.
            n == 2
        } else {
            assert!(n <= self.upper_bound());
            !self.v[n / 2]
        }
    }

    /// Iterator over the primes stored in this map.
    pub fn primes<'a>(&'a self) -> PrimeIterator<'a> {
        PrimeIterator {
            two: true,
            iter: self.v.iter().enumerate()
        }
    }

    /// Factorise `n` into (prime, exponent) pairs.
    ///
    /// Returns `Err((leftover, partial factorisation))` if `n` cannot
    /// be fully factored, or if `n` is zero (`leftover == 0`). A
    /// number can not be completely factored if and only if the prime
    /// factors of `n` are too large for this sieve, that is, if there
    /// is
    ///
    /// - a prime factor larger than `U^2`, or
    /// - more than one prime factor between `U` and `U^2`
    ///
    /// where `U` is the upper bound of the primes stored in this
    /// sieve.
    ///
    /// Notably, any number between `U` and `U^2` can always be fully
    /// factored, since these numbers are guaranteed to only have zero
    /// or one prime factors larger than `U`.
    pub fn factor(&self, mut n: usize) -> Result<Vec<(usize,usize)>,
                                                 (usize, Vec<(usize, usize)>)>
    {
        if n == 0 { return Err((0, vec![])) }

        let mut ret = Vec::new();

        for p in self.primes() {
            if n == 1 { break }

            let mut count = 0;
            while n % p == 0 {
                n /= p;
                count += 1;
            }
            if count > 0 {
                ret.push((p,count));
            }
        }
        if n != 1 {
            let b = self.upper_bound();
            if b * b >= n {
                // n is not divisible by anything from 1...sqrt(n), so
                // must be prime itself! (That is, even though we
                // don't know this prime specifically, we can infer
                // that it must be prime.)
                ret.push((n, 1));
            } else {
                // large factors :(
                return Err((n, ret))
            }
        }
        Ok(ret)
    }
}

impl<'a> Iterator for PrimeIterator<'a> {
    type Item = usize;
    #[inline]
    fn next(&mut self) -> Option<usize> {
        if self.two {
            self.two = false;
            Some(2)
        } else {
            for (i, is_not_prime) in &mut self.iter {
                if !is_not_prime {
                    return Some(2 * i + 1)
                }
            }
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let mut iter = self.clone();
        // TODO: this doesn't run in constant time, is it super-bad?
        match (iter.next(), iter.next_back()) {
            (Some(lo), Some(hi)) => {
                let (below_hi, above_hi) = primal_estimate::prime_pi(hi as u64);
                let (below_lo, above_lo) = primal_estimate::prime_pi(lo as u64);

                ((below_hi - cmp::min(above_lo, below_hi)) as usize,
                 Some((above_hi - below_lo + 1) as usize))
            }
            (Some(_), None) => (1, Some(1)),
            (None, _) => (0, Some(0))
        }
    }
}

impl<'a> DoubleEndedIterator for PrimeIterator<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<usize> {
        loop {
            match self.iter.next_back() {
                Some((i, false)) => return Some(2 * i + 1),
                Some((_, true)) => {/* continue */}
                None if self.two => {
                    self.two = false;
                    return Some(2)
                }
                None => return None
            }
        }
    }
}


#[cfg(test)]
mod tests {
    use super::Primes;

    #[test]
    fn is_prime() {
        let primes = Primes::sieve(1000);
        let tests = [
            (0, false),
            (1, false),
            (2, true),
            (3, true),
            (4, false),
            (5, true),
            (6, false),
            (7, true),
            (8, false),
            (9, false),
            (10, false),
            (11, true)
                ];

        for &(n, expected) in tests.iter() {
            assert_eq!(primes.is_prime(n), expected);
        }
    }

    #[test]
    fn upper_bound() {
        let primes = Primes::sieve(30);
        assert_eq!(primes.upper_bound(), 29);
        let primes = Primes::sieve(31);
        assert_eq!(primes.upper_bound(), 31);

        let primes = Primes::sieve(30000);
        assert_eq!(primes.upper_bound(), 29999);
        let primes = Primes::sieve(30001);
        assert_eq!(primes.upper_bound(), 30001);
    }

    #[test]
    fn primes_iterator() {
        let primes = Primes::sieve(50);
        let mut expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47];

        assert_eq!(primes.primes().collect::<Vec<usize>>(), expected);

        expected.reverse();
        assert_eq!(primes.primes().rev().collect::<Vec<usize>>(), expected);
    }

    #[test]
    fn factor() {
        let primes = Primes::sieve(1000);

        let tests: &[(usize, &[(usize, usize)])] = &[
            (1, &[]),
            (2, &[(2_usize, 1)]),
            (3, &[(3, 1)]),
            (4, &[(2, 2)]),
            (5, &[(5, 1)]),
            (6, &[(2, 1), (3, 1)]),
            (7, &[(7, 1)]),
            (8, &[(2, 3)]),
            (9, &[(3, 2)]),
            (10, &[(2, 1), (5, 1)]),

            (2*2*2*2*2 * 3*3*3*3*3, &[(2, 5), (3,5)]),
            (2*3*5*7*11*13*17*19, &[(2,1), (3,1), (5,1), (7,1), (11,1), (13,1), (17,1), (19,1)]),
            // a factor larger than that stored in the map
            (7561, &[(7561, 1)]),
            (2*7561, &[(2, 1), (7561, 1)]),
            (4*5*7561, &[(2, 2), (5,1), (7561, 1)]),
            ];
        for &(n, expected) in tests.iter() {
            assert_eq!(primes.factor(n), Ok(expected.to_vec()));
        }
    }

    #[test]
    fn factor_compare() {
        let short = Primes::sieve(30);
        let long = Primes::sieve(10000);

        let short_lim = short.upper_bound() * short.upper_bound() + 1;

        // every number less than bound^2 can be factored (since they
        // always have a factor <= bound).
        for n in 0..short_lim {
            assert_eq!(short.factor(n), long.factor(n))
        }
        // larger numbers can only sometimes be factored
        'next_n: for n in short_lim..10000 {
            let possible = short.factor(n);
            let real = long.factor(n).ok().unwrap();

            let mut seen_small = None;
            for (this_idx, &(p,i)) in real.iter().enumerate() {
                let last_short_prime = if p >= short_lim {
                    this_idx
                } else if p > short.upper_bound() {
                    match seen_small {
                        Some(idx) => idx,
                        None if i > 1 => this_idx,
                        None => {
                            // we can cope with one
                            seen_small = Some(this_idx);
                            continue
                        }
                    }
                } else {
                    // small enough
                    continue
                };

                // break into the two parts
                let (low, hi) = real.split_at(last_short_prime);
                let leftover = hi.iter().fold(1, |x, &(p, i)| x * p.pow(i as u32));

                assert_eq!(possible, Err((leftover, low.to_vec())));
                continue 'next_n;
            }

            // if we're here, we know that everything should match
            assert_eq!(possible, Ok(real))
        }
    }

    #[test]
    fn factor_failures() {
        let primes = Primes::sieve(30);

        assert_eq!(primes.factor(0),
                   Err((0, vec![])));
        // can only handle one large factor
        assert_eq!(primes.factor(31 * 31),
                   Err((31 * 31, vec![])));
        assert_eq!(primes.factor(2 * 3 * 31 * 31),
                   Err((31 * 31, vec![(2, 1), (3, 1)])));

        // prime that's too large (bigger than 30*30).
        assert_eq!(primes.factor(7561),
                   Err((7561, vec![])));
        assert_eq!(primes.factor(2 * 3 * 7561),
                   Err((7561, vec![(2, 1), (3, 1)])));
    }

    #[test]
    fn size_hint() {
        let mut i = 0;
        while i < 1000 {
            let sieve = Primes::sieve(i);

            let mut primes = sieve.primes();

            // check the size hint at each and every iteration
            loop {
                let (lo, hi) = primes.size_hint();

                let copy = primes.clone();
                let len = copy.count();

                let next = primes.next();

                assert!(lo <= len && len <= hi.unwrap(),
                        "found failing size_hint for {:?} to {}, should satisfy: {} <= {} <= {:?}",
                        next, i, lo, len, hi);

                if next.is_none() {
                    break
                }
            }

            i += 100;
        }
    }
}

#[cfg(all(test, feature = "unstable"))]
mod benches {
    use super::Primes;
    use test::Bencher;

    #[bench]
    fn sieve_small(b: &mut Bencher) {
        b.iter(|| Primes::sieve(100))
    }
    #[bench]
    fn sieve_medium(b: &mut Bencher) {
        b.iter(|| Primes::sieve(10_000))
    }
    #[bench]
    fn sieve_large(b: &mut Bencher) {
        b.iter(|| Primes::sieve(100_000))
    }
    #[bench]
    fn sieve_huge(b: &mut Bencher) {
        b.iter(|| Primes::sieve(10_000_000))
    }

    fn bench_iterate(b: &mut Bencher, upto: usize) {
        let sieve = Primes::sieve(upto);

        b.iter(|| {
            sieve.primes().count()
        })
    }

    #[bench]
    fn iterate_small(b: &mut Bencher) { bench_iterate(b, 100) }
    #[bench]
    fn iterate_large(b: &mut Bencher) { bench_iterate(b, 100_000) }
}