1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
use num::Integer;

fn wrapping_pow(mut base: u64, mut exp: u32) -> u64 {
    let mut acc: u64 = 1;
    while exp > 0 {
        if exp % 2 == 1 {
            acc = acc.wrapping_mul(base)
        }
        base = base.wrapping_mul(base);
        exp /= 2;
    }
    acc
}

/// Returns integers `(y, k)` such that `x = y^k` with `k` maximised
/// (other than for `x = 0, 1`, in which case `y = x`, `k = 1`).
///
/// # Examples
///
/// ```rust
/// # extern crate primal_check as primal;
/// assert_eq!(primal::as_perfect_power(2), (2, 1));
/// assert_eq!(primal::as_perfect_power(4), (2, 2));
/// assert_eq!(primal::as_perfect_power(8), (2, 3));
/// assert_eq!(primal::as_perfect_power(1024), (2, 10));
///
/// assert_eq!(primal::as_perfect_power(1000), (10, 3));
///
/// assert_eq!(primal::as_perfect_power(15), (15, 1));
/// ```
pub fn as_perfect_power(x: u64) -> (u64, u8) {
    if x == 0 || x == 1 {
        return (x, 1)
    }

    let floor_log_2 = 64 - x.leading_zeros() as u32 - 1;

    let x_ = x as f64;
    let mut last = (x, 1);
    // TODO: we could be smarter about this: we know all the possible
    // primes that can divide the exponent (since we have a list up to
    // 251 >= 64), so we really only need to check them.
    let mut expn: u32 = 2;
    let mut step = 1;
    while expn <= floor_log_2 {
        let factor = x_.powf(1.0/expn as f64).round() as u64;
        // the only case this will wrap is if x is close to 2^64 and
        // the round() rounds up, pushing this calculation over the
        // edge, however, the overflow will be well away from x, so we
        // still correctly don't take this branch. (x can't be a
        // perfect power if the result rounds away.)
        if wrapping_pow(factor, expn) == x {
            last = (factor, expn as u8);
            // if x is a 2nd and 5th power, it's going to be a 10th
            // power too, meaning we can search faster.
            // TODO: check if this is actually saving work
            step = step.lcm(&expn);
        }

        expn += step;
    }
    last
}

/// Return `Some((p, k))` if `x = p^k` for some prime `p` and `k >= 1`
/// (that is, including when `x` is itself a prime).
///
/// Returns `None` if `x` not a perfect power.
///
/// # Examples
///
/// ```rust
/// # extern crate primal_check as primal;
/// assert_eq!(primal::as_prime_power(2), Some((2, 1)));
/// assert_eq!(primal::as_prime_power(4), Some((2, 2)));
/// assert_eq!(primal::as_prime_power(8), Some((2, 3)));
/// assert_eq!(primal::as_prime_power(1024), Some((2, 10)));
///
/// assert_eq!(primal::as_prime_power(1000), None);
///
/// assert_eq!(primal::as_prime_power(15), None);
/// ```
pub fn as_prime_power(x: u64) -> Option<(u64, u8)> {
    let (y, k) = as_perfect_power(x);
    if ::miller_rabin(y) {
        Some((y, k))
    } else {
        None
    }
}

#[cfg(test)]
mod tests {
    use primal::Sieve;

    use super::{as_perfect_power, as_prime_power};

    #[test]
    fn perfect_and_prime_power() {
        let tests = [
            (0, (0, 1), false),
            (1, (1, 1), false),
            (2, (2, 1), true),
            (3, (3, 1), true),
            (4, (2, 2), true),
            (5, (5, 1), true),
            (6, (6, 1), false),
            (8, (2, 3), true),
            (9, (3, 2), true),
            (16, (2, 4), true),
            (25, (5, 2), true),
            (32, (2, 5), true),
            (36, (6, 2), false),
            (100, (10, 2), false),
            (1000, (10, 3), false),
                ];

        for &(x, expected, is_prime) in tests.iter() {
            assert_eq!(as_perfect_power(x), expected);
            assert_eq!(as_prime_power(x),
                       if is_prime { Some((expected))} else { None })
        }

        let sieve = Sieve::new(200);
        let mut primes = sieve.primes_from(0);
        const MAX: f64 = 0xFFFF_FFFF_FFFF_FFFFu64 as f64;
        // test a whole pile of (semi)primes
        loop {
            let p = match primes.next() {
                Some(p) => p as u64,
                None => break
            };

            let subprimes = primes.clone().map(|x| (x, false));
            // include 1 to test p itself.
            for (q, is_prime) in Some((1, true)).into_iter().chain(subprimes) {
                let pq = p * q as u64;
                for n in (1..MAX.log(pq as f64) as u32) {
                    let x = pq.pow(n);

                    let expected = (pq, n as u8);
                    assert_eq!(as_perfect_power(x), expected);
                    assert_eq!(as_prime_power(x),
                               if is_prime { Some(expected) } else { None });
                }
            }
        }
    }
}