1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//
// Copyright (c) Dell Inc., or its subsidiaries. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//

use crate::client_factory::ClientFactoryAsync;
use crate::error::Error;
use crate::event::writer::EventWriter;
use crate::segment::event::{Incoming, PendingEvent, RoutingInfo};
use crate::segment::metadata::SegmentMetadataClient;
use crate::segment::reactor::Reactor;
use crate::util::get_random_u128;

use pravega_client_channel::{create_channel, ChannelSender};
use pravega_client_shared::{ScopedSegment, ScopedStream, WriterId};

use std::collections::VecDeque;
use tokio::sync::oneshot;
use tracing::info_span;
use tracing_futures::Instrument;

type EventHandle = oneshot::Receiver<Result<(), Error>>;

/// Allow for writing raw bytes directly to a segment.
///
/// ByteWriter does not frame, attach headers, or otherwise modify the bytes written to it in any
/// way. So unlike [`EventWriter`] the data written cannot be split apart when read.
/// As such, any bytes written by this API can ONLY be read using [`ByteReader`].
///
/// ## Atomicity
/// If buf length is less than or equal to 8 MiB, the entire buffer will be written atomically.
/// If buf length is greater than 8 MiB, only the first 8 MiB will be written, and it will be written atomically.
/// In either case, the actual number of bytes written will be returned and those bytes are written atomically.
///
/// ## Parallelism
/// Multiple ByteWriters write to the same segment as this will result in interleaved data,
/// which is not desirable in most cases. ByteWriter uses Conditional Append to make sure that writers
/// are aware of the content in the segment. If another process writes data to the segment after this one began writing,
/// all subsequent writes from this writer will not be written and [`flush`] will fail. This prevents data from being accidentally interleaved.
///
/// ## Backpressure
/// Write has a backpressure mechanism. Internally, it uses [`Channel`] to send event to
/// Reactor for processing. [`Channel`] can has a limited [`capacity`], when its capacity
/// is reached, any further write will not be accepted until enough space has been freed in the [`Channel`].
///
/// # Retry
/// The ByteWriter implementation provides [`retry`] logic to handle connection failures and service host
/// failures. Internal retries will not violate the exactly once semantic so it is better to rely on them
/// than to wrap this with custom retry logic.
///
/// [`channel`]: pravega_client_channel
/// [`capacity`]: ByteWriter::CHANNEL_CAPACITY
/// [`EventWriter`]: crate::event::writer::EventWriter
/// [`ByteReader`]: crate::byte::reader::ByteReader
/// [`flush`]: ByteWriter::flush
/// [`retry`]: pravega_client_retry
///
/// # Examples
/// ```no_run
/// use pravega_client_config::ClientConfigBuilder;
/// use pravega_client::client_factory::ClientFactoryAsync;
/// use pravega_client_shared::ScopedStream;
/// use pravega_client::byte::ByteWriter;
/// use tokio::runtime::Handle;
///
/// #[tokio::main]
/// async fn main() {
///     // assuming Pravega controller is running at endpoint `localhost:9090`
///     let config = ClientConfigBuilder::default()
///         .controller_uri("localhost:9090")
///         .build()
///         .expect("creating config");
///
///     let handle = Handle::current();
///     let client_factory = ClientFactoryAsync::new(config, handle);
///
///     // assuming scope:myscope, stream:mystream exist.
///     // notice that this stream should be a fixed sized single segment stream
///     let stream = ScopedStream::from("myscope/mystream");
///
///     let mut byte_writer = client_factory.create_byte_writer(stream).await;
///
///     let payload = "hello world".to_string().into_bytes();
///
///     // It doesn't mean the data is persisted on the server side
///     // when write method returns Ok, user should call flush to ensure
///     // all data has been acknowledged by the server.
///     byte_writer.write(&payload).await.expect("write");
///     byte_writer.flush().await.expect("flush");
/// }
/// ```
pub struct ByteWriter {
    writer_id: WriterId,
    scoped_segment: ScopedSegment,
    sender: ChannelSender<Incoming>,
    metadata_client: SegmentMetadataClient,
    factory: ClientFactoryAsync,
    event_handles: VecDeque<EventHandle>,
    write_offset: i64,
}

impl ByteWriter {
    // maximum 16 MB total size of events could be held in memory
    const CHANNEL_CAPACITY: usize = 16 * 1024 * 1024;

    pub(crate) async fn new(stream: ScopedStream, factory: ClientFactoryAsync) -> Self {
        let (sender, receiver) = create_channel(Self::CHANNEL_CAPACITY);
        let writer_id = WriterId(get_random_u128());
        let segments = factory
            .controller_client()
            .get_head_segments(&stream)
            .await
            .expect("get head segments");
        assert_eq!(
            segments.len(),
            1,
            "Byte stream is configured with more than one segment"
        );
        let segment = segments.iter().next().unwrap().0.clone();
        let scoped_segment = ScopedSegment {
            scope: stream.scope.clone(),
            stream: stream.stream.clone(),
            segment,
        };
        let metadata_client = factory
            .create_segment_metadata_client(scoped_segment.clone())
            .await;
        let span = info_span!("Reactor", byte_stream_writer = %writer_id);
        // spawn is tied to the factory runtime.
        let _h = factory.runtime_handle().enter();
        tokio::spawn(Reactor::run(stream, sender.clone(), receiver, factory.clone(), None).instrument(span));
        ByteWriter {
            writer_id,
            scoped_segment,
            sender,
            metadata_client,
            factory,
            event_handles: VecDeque::new(),
            write_offset: 0,
        }
    }

    /// Writes the given data to the server asynchronously. It doesn't mean the data is persisted on the server side
    /// when this method returns Ok, user should call flush to ensure all data has been acknowledged
    /// by the server.
    ///
    /// # Examples
    /// ```ignore
    /// let mut byte_writer = client_factory.create_byte_writer(segment).await;
    /// let payload = vec![0; 8];
    /// let size = byte_writer.write(&payload).await;
    /// ```
    pub async fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
        let bytes_to_write = std::cmp::min(buf.len(), EventWriter::MAX_EVENT_SIZE);
        let payload = buf[0..bytes_to_write].to_vec();
        let oneshot_receiver = self.write_internal(self.sender.clone(), payload).await;
        self.write_offset += bytes_to_write as i64;
        self.event_handles.push_back(oneshot_receiver);

        while let Some(handle) = self.event_handles.front_mut() {
            if let Ok(res) = handle.try_recv() {
                res?;
                self.event_handles.pop_front().expect("remove successful handle");
            } else {
                break;
            }
        }
        Ok(bytes_to_write)
    }

    /// Flush data.
    ///
    /// It will wait until all pending appends have acknowledgment.
    ///
    /// # Examples
    /// ```ignore
    /// let mut byte_writer = client_factory.create_byte_writer(segment).await;
    /// let payload = vec![0; 8];
    /// let size = byte_writer.write(&payload).await;
    /// byte_writer.flush().await;
    /// ```
    pub async fn flush(&mut self) -> Result<(), Error> {
        while self.event_handles.front().is_some() {
            let handle = self.event_handles.pop_front().expect("get first handle");
            let event_result = handle.await.map_err(|e| Error::InternalFailure {
                msg: format!("oneshot error {:?}", e),
            })?;
            event_result?;
        }
        Ok(())
    }

    /// Seal the segment and no further writes are allowed.
    ///
    /// # Examples
    /// ```ignore
    /// let mut byte_writer = client_factory.create_byte_writer(segment).await;
    /// byte_writer.seal().await.expect("seal segment");
    /// ```
    pub async fn seal(&mut self) -> Result<(), Error> {
        self.flush().await?;
        self.metadata_client
            .seal_segment()
            .await
            .map_err(|e| Error::InternalFailure {
                msg: format!("segment seal error: {:?}", e),
            })
    }

    /// Truncate data before a given offset for the segment. No reads are allowed before
    /// truncation point after calling this method.
    ///
    /// # Examples
    /// ```ignore
    /// let byte_writer = client_factory.create_byte_writer(segment).await;
    /// byte_writer.truncate_data_before(1024).await.expect("truncate segment");
    /// ```
    pub async fn truncate_data_before(&self, offset: i64) -> Result<(), Error> {
        self.metadata_client
            .truncate_segment(offset)
            .await
            .map_err(|e| Error::InternalFailure {
                msg: format!("segment truncation error: {:?}", e),
            })
    }

    /// Track the current write position for this writer.
    ///
    /// # Examples
    /// ```ignore
    /// let byte_writer = client_factory.create_byte_writer(segment).await;
    /// let offset = byte_writer.current_write_offset();
    /// ```
    pub fn current_offset(&self) -> u64 {
        self.write_offset as u64
    }

    /// Seek to the tail of the segment.
    ///
    /// This method is useful for tail reads.
    /// # Examples
    /// ```ignore
    /// let mut byte_writer = client_factory.create_byte_writer(segment).await;
    /// byte_writer.seek_to_tail_async().await;
    /// ```
    pub async fn seek_to_tail(&mut self) {
        let segment_info = self
            .metadata_client
            .get_segment_info()
            .await
            .expect("failed to get segment info");
        self.write_offset = segment_info.write_offset;
    }

    /// Reset the internal Reactor, making it ready for new appends.
    ///
    /// Use this method if you want to continue to append after ConditionalCheckFailure error.
    /// It will clear all pending events and set the Reactor ready.
    ///
    /// # Examples
    /// ```ignore
    /// if let Err(Error::ConditionalCheckFailure(_e)) = byte_writer.flush().await {
    ///     byte_writer.reset().await.expect("reset");
    ///     byte_writer.seek_to_tail().await;
    /// }
    /// byte_writer.write(&payload).await.expect("write");
    /// ```
    pub async fn reset(&mut self) -> Result<(), Error> {
        self.event_handles.clear();
        // send reset signal to reactor
        self.sender
            .send((Incoming::Reset(self.scoped_segment.clone()), 0))
            .await
            .map_err(|e| Error::InternalFailure {
                msg: format!("failed to send request to reactor: {:?}", e),
            })?;

        Ok(())
    }

    async fn write_internal(
        &self,
        sender: ChannelSender<Incoming>,
        event: Vec<u8>,
    ) -> oneshot::Receiver<Result<(), Error>> {
        let size = event.len();
        let (tx, rx) = oneshot::channel();
        let routing_info = RoutingInfo::Segment(self.scoped_segment.clone());
        if let Some(pending_event) =
            PendingEvent::without_header(routing_info, event, Some(self.write_offset), tx)
        {
            let append_event = Incoming::AppendEvent(pending_event);
            if let Err(_e) = sender.send((append_event, size)).await {
                let (tx_error, rx_error) = oneshot::channel();
                tx_error
                    .send(Err(Error::InternalFailure {
                        msg: "failed to send request to reactor".to_string(),
                    }))
                    .expect("send error");
                return rx_error;
            }
        }
        rx
    }
}

impl Drop for ByteWriter {
    fn drop(&mut self) {
        let _res = self.sender.send_without_bp(Incoming::Close());
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::client_factory::ClientFactory;
    use crate::util::create_stream;
    use pravega_client_config::connection_type::{ConnectionType, MockType};
    use pravega_client_config::ClientConfigBuilder;
    use pravega_client_shared::PravegaNodeUri;

    #[test]
    #[should_panic(expected = "Byte stream is configured with more than one segment")]
    fn test_invalid_stream_config() {
        let config = ClientConfigBuilder::default()
            .connection_type(ConnectionType::Mock(MockType::Happy))
            .mock(true)
            .controller_uri(PravegaNodeUri::from("127.0.0.2:9091".to_string()))
            .build()
            .unwrap();
        let factory = ClientFactory::new(config);
        factory.runtime().block_on(create_stream(
            &factory,
            "testScopeInvalid",
            "testStreamInvalid",
            2,
        ));
        let stream = ScopedStream::from("testScopeInvalid/testStreamInvalid");
        factory.runtime().block_on(factory.create_byte_writer(stream));
    }
}