1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
use rand_core::{RngCore, CryptoRng};
#[cfg(feature = "zeroize")]
use zeroize::{Zeroize, ZeroizeOnDrop};
use crate::{
  kem::*,
  symmetric::kdf,
  params::*,
  KyberError
};

/// Unilateral Key Exchange Initiation Byte Length 
pub const UAKE_INIT_BYTES: usize = KYBER_PUBLICKEYBYTES + KYBER_CIPHERTEXTBYTES;
/// Unilateral Key Exchange Response Byte Length
pub const UAKE_RESPONSE_BYTES: usize = KYBER_CIPHERTEXTBYTES;
/// Mutual Key Exchange Initiation Byte Length 
pub const AKE_INIT_BYTES: usize = KYBER_PUBLICKEYBYTES + KYBER_CIPHERTEXTBYTES;
/// Mutual Key Exchange Response Byte Length
pub const AKE_RESPONSE_BYTES: usize = 2 * KYBER_CIPHERTEXTBYTES;

/// Result of encapsulating a public key which includes the ciphertext and shared secret
pub type Encapsulated =  Result<([u8; KYBER_CIPHERTEXTBYTES], [u8; KYBER_SSBYTES]), KyberError>;
/// The result of  decapsulating a ciphertext which produces a shared secret when confirmed
pub type Decapsulated = Result<[u8; KYBER_SSBYTES], KyberError>;
/// Kyber public key
pub type PublicKey = [u8; KYBER_PUBLICKEYBYTES];
/// Kyber secret key
pub type SecretKey = [u8; KYBER_SECRETKEYBYTES];
/// Kyber Shared Secret
pub type SharedSecret = [u8; KYBER_SSBYTES]; 
/// Bytes to send when initiating a unilateral key exchange
pub type UakeSendInit = [u8; UAKE_INIT_BYTES]; 
/// Bytes to send when responding to a unilateral key exchange
pub type UakeSendResponse = [u8; UAKE_RESPONSE_BYTES]; 
/// Bytes to send when initiating a mutual key exchange
pub type AkeSendInit = [u8; AKE_INIT_BYTES]; 
/// Bytes to send when responding to a mutual key exchange
pub type AkeSendResponse = [u8; AKE_RESPONSE_BYTES]; 

// Ephemeral keys
type TempKey = [u8; KYBER_SSBYTES];
type Eska = [u8; KYBER_SECRETKEYBYTES];

/// Used for unilaterally authenticated key exchange between two parties.
/// 
/// ```
/// # use pqc_kyber::*;
/// # fn main() -> Result<(),KyberError> {
/// let mut rng = rand::thread_rng();
/// 
/// let mut alice = Uake::new();
/// let mut bob = Uake::new();
/// let bob_keys = keypair(&mut rng);
/// 
/// let client_init = alice.client_init(&bob_keys.public, &mut rng);
/// let server_send = bob.server_receive(client_init, &bob_keys.secret, &mut rng)?;
/// let client_confirm = alice.client_confirm(server_send);
/// 
/// assert_eq!(alice.shared_secret, bob.shared_secret);
/// # Ok(()) }

#[cfg_attr(feature = "zeroize", derive(Zeroize, ZeroizeOnDrop))]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Uake {
  /// The resulting shared secret from a key exchange
  pub shared_secret: SharedSecret,
  /// Sent when initiating a key exchange
  send_a: UakeSendInit,
  /// Response to a key exchange initiation
  send_b: UakeSendResponse,
  // Epheremal keys
  temp_key: TempKey,
  eska: Eska
}

impl Default for Uake {
  fn default() -> Self {
    Uake {
      shared_secret: [0u8; KYBER_SSBYTES],
      send_a: [0u8; UAKE_INIT_BYTES],
      send_b: [0u8; UAKE_RESPONSE_BYTES],
      temp_key: [0u8; KYBER_SSBYTES],
      eska: [0u8; KYBER_SECRETKEYBYTES],
    }
  }
}

impl Uake {
  /// Builds new UAKE struct
  /// ```
  /// # use pqc_kyber::Uake;
  /// let mut kex = Uake::new();
  /// ```
  pub fn new() -> Self {
    Self::default()
  }

  /// Initiates a Unilaterally Authenticated Key Exchange.
  /// ``` 
  /// # use pqc_kyber::*;
  /// # fn main() -> Result<(),KyberError> {
  /// let mut rng = rand::thread_rng();
  /// let mut alice = Uake::new();
  /// let bob_keys = keypair(&mut rng);
  /// let client_init = alice.client_init(&bob_keys.public, &mut rng);
  /// # Ok(()) }
  /// ```
  pub fn client_init<R>(&mut self, pubkey: &PublicKey, rng: &mut R) 
  -> UakeSendInit
    where R: CryptoRng + RngCore
  {
    uake_init_a(
      &mut self.send_a, &mut self.temp_key, 
      &mut self.eska, pubkey, rng
    );
    self.send_a
  }

  /// Handles the output of a `client_init()` request
  /// ```
  /// # use pqc_kyber::*;
  /// # fn main() -> Result<(),KyberError> {
  /// # let mut rng = rand::thread_rng();
  /// let mut alice = Uake::new();
  /// let mut bob = Uake::new();
  /// let mut bob_keys = keypair(&mut rng);
  /// let client_init = alice.client_init(&bob_keys.public, &mut rng);
  /// let server_send = bob.server_receive(client_init, &bob_keys.secret, &mut rng)?;
  /// # Ok(()) }
  pub fn server_receive<R>(
    &mut self, send_a: UakeSendInit, secretkey: &SecretKey, rng: &mut R
  ) 
  -> Result<UakeSendResponse, KyberError> 
    where R: CryptoRng + RngCore
  {
    uake_shared_b(
      &mut self.send_b, &mut self.shared_secret,
      &send_a, secretkey, rng
    )?;
    Ok(self.send_b)
  }

  /// Decapsulates and authenticates the shared secret from the output of 
  /// `server_receive()`
  /// ```
  /// # use pqc_kyber::*;
  /// # fn main() -> Result<(),KyberError> {
  /// # let mut rng = rand::thread_rng();
  /// # let mut alice = Uake::new();
  /// # let mut bob = Uake::new();
  /// # let bob_keys = keypair(&mut rng);
  /// let client_init = alice.client_init(&bob_keys.public, &mut rng);
  /// let server_send = bob.server_receive(client_init, &bob_keys.secret, &mut rng)?;
  /// let client_confirm = alice.client_confirm(server_send);
  /// assert_eq!(alice.shared_secret, bob.shared_secret);
  /// # Ok(()) }
  pub fn client_confirm(&mut self, send_b: UakeSendResponse) 
  -> Result<(), KyberError> 
  {
    uake_shared_a(
      &mut self.shared_secret, &send_b, 
      &self.temp_key, &self.eska
    )?;
    Ok(())
  }
}

/// Used for mutually authenticated key exchange between two parties.
/// 
/// # Example:
/// ``` 
/// # use pqc_kyber::*;
/// # fn main() -> Result<(),KyberError> {
/// let mut rng = rand::thread_rng();
/// 
/// let mut alice = Ake::new();
/// let mut bob = Ake::new();
/// 
/// let alice_keys = keypair(&mut rng);
/// let bob_keys = keypair(&mut rng);
/// 
/// let client_init = alice.client_init(&bob_keys.public, &mut rng);
/// let server_send = bob.server_receive(client_init, &alice_keys.public, &bob_keys.secret, &mut rng)?;
/// let client_confirm = alice.client_confirm(server_send, &alice_keys.secret);
/// 
/// assert_eq!(alice.shared_secret, bob.shared_secret);
/// # Ok(()) }
/// ```
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "zeroize", derive(Zeroize, ZeroizeOnDrop))]
pub struct Ake {
  /// The resulting shared secret from a key exchange
  pub shared_secret: SharedSecret,
  /// Sent when initiating a key exchange
  send_a: AkeSendInit,
  /// Sent back responding to a key exchange initiation
  send_b: AkeSendResponse,
  // Epheremal keys
  temp_key: TempKey,
  eska: Eska
}

impl Default for Ake {
  fn default() -> Self {
    Ake {
      shared_secret: [0u8; KYBER_SSBYTES],
      send_a: [0u8; AKE_INIT_BYTES],
      send_b: [0u8; AKE_RESPONSE_BYTES],
      temp_key: [0u8; KYBER_SSBYTES],
      eska: [0u8; KYBER_SECRETKEYBYTES],
    }
  }
}

impl Ake {
  /// Builds a new AKE struct
  /// ```
  /// # use pqc_kyber::Ake;
  /// let mut kex = Ake::new();
  /// ```
  pub fn new() -> Self {
    Self::default()
  }

  /// Initiates a Mutually Authenticated Key Exchange.
  /// ``` 
  /// # use pqc_kyber::*;
  /// # fn main() -> Result<(),KyberError> {
  /// let mut rng = rand::thread_rng();
  /// let mut alice = Ake::new();
  /// let bob_keys = keypair(&mut rng);
  /// let client_init = alice.client_init(&bob_keys.public, &mut rng);
  /// # Ok(()) }
  /// ```
  pub fn client_init<R>(&mut self, pubkey: &PublicKey, rng: &mut R) 
  -> AkeSendInit
    where R: CryptoRng + RngCore
  {
    ake_init_a(
      &mut self.send_a, &mut self.temp_key, 
      &mut self.eska, pubkey, rng
    );
    self.send_a
  }

  /// Handles and authenticates the output of a `client_init()` request
  /// ```
  /// # use pqc_kyber::*;
  /// # fn main() -> Result<(),KyberError> {
  /// # let mut rng = rand::thread_rng();
  /// let mut alice = Ake::new();
  /// let mut bob = Ake::new();
  /// let alice_keys = keypair(&mut rng);
  /// let bob_keys = keypair(&mut rng);
  /// let client_init = alice.client_init(&bob_keys.public, &mut rng);
  /// let server_send = bob.server_receive(client_init, &alice_keys.public, &bob_keys.secret, &mut rng)?;
  /// # Ok(()) }
  pub fn server_receive<R>(
    &mut self, ake_send_a: AkeSendInit, pubkey: &PublicKey, 
    secretkey: &SecretKey, rng: &mut R
  ) 
  -> Result<AkeSendResponse, KyberError>
    where R: CryptoRng + RngCore 
  {
    ake_shared_b(
      &mut self.send_b, &mut self.shared_secret, 
      &ake_send_a, secretkey, pubkey, rng
    )?;
    Ok(self.send_b)
  }

  /// Decapsulates and authenticates the shared secret from the output of 
  /// `server_receive()`
  /// ```
  /// # use pqc_kyber::*;
  /// # fn main() -> Result<(),KyberError> {
  /// # let mut rng = rand::thread_rng();
  /// # let mut alice = Ake::new();
  /// # let mut bob = Ake::new();
  /// # let alice_keys = keypair(&mut rng);
  /// # let bob_keys = keypair(&mut rng);
  /// # let client_init = alice.client_init(&bob_keys.public, &mut rng);
  /// let server_send = bob.server_receive(client_init, &alice_keys.public, &bob_keys.secret, &mut rng)?;
  /// let client_confirm = alice.client_confirm(server_send, &alice_keys.secret);
  /// assert_eq!(alice.shared_secret, bob.shared_secret);
  /// # Ok(()) }
  pub fn client_confirm(&mut self, send_b: AkeSendResponse, secretkey: &SecretKey) 
  -> Result<(), KyberError> 
  {
    ake_shared_a(
      &mut self.shared_secret, &send_b, 
      &self.temp_key, &self.eska, secretkey
    )?;
    Ok(())
  }
}


// Unilaterally Authenticated Key Exchange initiation
fn uake_init_a<R>(
  send: &mut[u8], 
  tk: &mut[u8], 
  sk: &mut[u8], 
  pkb: &[u8],
  rng: &mut R
)
  where R: CryptoRng + RngCore
{
  crypto_kem_keypair(send, sk, rng, None);
  crypto_kem_enc(&mut send[KYBER_PUBLICKEYBYTES..], tk, pkb, rng, None);
}

// Unilaterally authenticated key exchange computation by Bob 
fn uake_shared_b<R>(
  send: &mut[u8], 
  k: &mut[u8], 
  recv: &[u8], 
  skb: &[u8],
  rng: &mut R
) -> Result<(), KyberError>
  where R: CryptoRng + RngCore
{
  let mut buf = [0u8; 2*KYBER_SYMBYTES];
  crypto_kem_enc(send, &mut buf, recv, rng, None);
  crypto_kem_dec(&mut buf[KYBER_SYMBYTES..], &recv[KYBER_PUBLICKEYBYTES..], skb)?;
  kdf(k, &buf, 2*KYBER_SYMBYTES);
  Ok(())
}

// Unilaterally authenticated key exchange computation by Alice
fn uake_shared_a(
  k: &mut[u8], 
  recv: &[u8], 
  tk: &[u8], 
  sk: &[u8]
) -> Result<(), KyberError> 
{
  let mut buf = [0u8; 2*KYBER_SYMBYTES];
  crypto_kem_dec(&mut buf, recv, sk)?;
  buf[KYBER_SYMBYTES..].copy_from_slice(&tk[..]);
  kdf(k, &buf, 2*KYBER_SYMBYTES);
  Ok(())
}

// Authenticated key exchange initiation by Alice
fn ake_init_a<R>(
  send: &mut[u8], 
  tk: &mut[u8], 
  sk: &mut[u8], 
  pkb: &[u8],
  rng: &mut R
)
  where R: CryptoRng + RngCore
{
  crypto_kem_keypair(send, sk, rng, None);
  crypto_kem_enc(&mut send[KYBER_PUBLICKEYBYTES..], tk, pkb, rng, None);
}

// Mutually authenticated key exchange computation by Bob
fn ake_shared_b<R>(
  send: &mut[u8], 
  k: &mut[u8], 
  recv: &[u8], 
  skb: &[u8], 
  pka: &[u8],
  rng: &mut R
) -> Result<(), KyberError> 
  where R: CryptoRng + RngCore
{
  let mut buf = [0u8; 3*KYBER_SYMBYTES];
  crypto_kem_enc(send, &mut buf, recv, rng, None);
  crypto_kem_enc(&mut send[KYBER_CIPHERTEXTBYTES..], &mut buf[KYBER_SYMBYTES..], pka, rng, None);
  crypto_kem_dec(&mut buf[2*KYBER_SYMBYTES..], &recv[KYBER_PUBLICKEYBYTES..], skb)?;
  kdf(k, &buf, 3*KYBER_SYMBYTES);
  Ok(())
}

// Mutually authenticated key exchange computation by Alice
fn ake_shared_a(
  k: &mut[u8], 
  recv: &[u8], 
  tk: &[u8], 
  sk: &[u8], 
  ska: &[u8]
) -> Result<(), KyberError> 
{
  let mut buf = [0u8; 3*KYBER_SYMBYTES];
  crypto_kem_dec(&mut buf, recv, sk)?;
  crypto_kem_dec(&mut buf[KYBER_SYMBYTES..], &recv[KYBER_CIPHERTEXTBYTES..], ska)?;
  buf[2*KYBER_SYMBYTES..].copy_from_slice(&tk[..]);
  kdf(k, &buf, 3*KYBER_SYMBYTES);
  Ok(())
}