1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use serde::{Deserialize, Serialize};
use sha2::{digest::FixedOutput, Digest, Sha256};
use std::marker::PhantomData;

const SALT: &str = "79ziepia7vhjgviiwjhnend3ofjqocsi2winc4ptqhmkvcajihywxcizewvckg9h6gs4j83v9";

/// Proof of Work over concrete type T. T can be any type that implements serde::Serialize.
#[derive(Serialize, Deserialize, PartialEq, Clone, Debug)]
pub struct PoW<T> {
    pub nonce: u64,
    pub result: String,
    _spook: PhantomData<T>,
}

impl<T: Serialize> PoW<T> {
    /// Create Proof of Work over item of type T.
    ///
    /// Make sure difficulty is not too high. A 64 bit difficulty, for example, takes a long time
    /// on a general purpose processor.
    ///
    /// Returns bincode::Error if serialization fails.
    pub fn prove_work(t: &T, difficulty: u128) -> bincode::Result<PoW<T>> {
        bincode_cfg()
            .serialize(t)
            .map(|v| Self::prove_work_serialized(&v, difficulty))
    }

    /// Create Proof of Work on an already serialized item of type T.
    /// The input is assumed to be serialized using network byte order.
    ///
    /// Make sure difficulty is not too high. A 64 bit difficulty, for example, takes a long time
    /// on a general purpose processor.
    pub fn prove_work_serialized(prefix: &[u8], difficulty: u128) -> PoW<T> {
        let prefix_sha = Sha256::new().chain(SALT).chain(prefix);
        let mut n = 0;
        let mut result = 0;
        while result < difficulty {
            n += 1;
            result = score(prefix_sha.clone(), n);
        }
        PoW {
            nonce: n,
            result: result.to_string(),
            _spook: PhantomData,
        }
    }

    /// Calculate the PoW score with the provided input T.
    pub fn calculate(&self, t: &T) -> bincode::Result<u128> {
        bincode_cfg()
            .serialize(t)
            .map(|v| self.calculate_serialized(&v))
    }

    /// Calculate the PoW score of an already serialized T and self.
    /// The input is assumed to be serialized using network byte order.
    pub fn calculate_serialized(&self, target: &[u8]) -> u128 {
        score(Sha256::new().chain(SALT).chain(target), self.nonce)
    }

    /// Verifies that the PoW is indeed generated out of the phrase provided.
    pub fn is_valid_proof(&self, t: &T) -> bool {
        match self.calculate(t) {
            Ok(res) => return if self.result == res.to_string() {true} else {false},
            Err(_) => return false 
        }
    }

    /// Checks if the PoW result is of sufficient difficulty
    pub fn is_sufficient_difficulty(&self, target_diff: u128) -> bool {
        match self.result.parse::<u128>() {
            Ok(res) => return res >= target_diff,
            Err(_) =>  return false
        }
    }
}

fn score(prefix_sha: Sha256, nonce: u64) -> u128 {
    first_bytes_as_u128(
        prefix_sha
            .chain(&nonce.to_be_bytes()) // to_be_bytes() converts to network endian
            .fixed_result()
            .as_slice(),
    )
}

/// # Panics
///
/// panics if inp.len() < 16
fn first_bytes_as_u128(inp: &[u8]) -> u128 {
    bincode_cfg().deserialize(&inp).unwrap()
}

fn bincode_cfg() -> bincode::Config {
    let mut cfg = bincode::config();
    cfg.big_endian();
    cfg
}

#[cfg(test)]
mod test {
    use super::*;

    const DIFFICULTY: u128 = 0xff000000000000000000000000000000;

    #[test]
    fn base_functionality() {
        // Let's prove we did work targeting a phrase.
        let phrase = b"Ex nihilo nihil fit.".to_vec();
        let pw = PoW::prove_work(&phrase, DIFFICULTY).unwrap();
        assert!(pw.calculate(&phrase).unwrap() >= DIFFICULTY);
        assert!(pw.is_valid_proof(&phrase));
        assert!(pw.is_sufficient_difficulty(DIFFICULTY));
    }

    #[test]
    fn double_pow() {
        let phrase = "Ex nihilo nihil fit.".to_owned();
        let pw = PoW::prove_work(&phrase, DIFFICULTY).unwrap();
        let pwpw: PoW<PoW<String>> = PoW::prove_work(&pw, DIFFICULTY).unwrap();
        assert!(pw.calculate(&phrase).unwrap() >= DIFFICULTY);
        assert!(pwpw.calculate(&pw).unwrap() >= DIFFICULTY);
        assert!(pw.is_sufficient_difficulty(DIFFICULTY));
        assert!(pwpw.is_sufficient_difficulty(DIFFICULTY));
        assert!(pw.is_valid_proof(&phrase));
        assert!(pwpw.is_valid_proof(&pw));
    }

    #[test]
    fn is_not_valid_proof() {
        let phrase = "Ex nihilo nihil fit.".to_owned();
        let phrase2 = "Omne quod movetur ab alio movetur.".to_owned();
        let pw = PoW::prove_work(&phrase, DIFFICULTY).unwrap();
        let pw2 = PoW::prove_work(&phrase2, DIFFICULTY).unwrap();
        assert!(!pw.is_valid_proof(&phrase2));
        assert!(!pw2.is_valid_proof(&phrase));
    }

    #[test]
    fn serialization_test() {
        let target: u8 = 1;
        let pw = PoW::prove_work(&target, DIFFICULTY).unwrap();
        let message: (u8, PoW<u8>) = (target, pw);
        let message_ser = bincode_cfg().serialize(&message).unwrap();
        let recieved_message: (u8, PoW<u8>) = bincode_cfg().deserialize(&message_ser).unwrap();
        assert_eq!(recieved_message, message);
        assert!(message.1.is_sufficient_difficulty(DIFFICULTY));
        assert!(message.1.is_valid_proof(&target));
    }
}