1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
/*!
# pour
[![crates.io](https://img.shields.io/crates/v/pour)](https://crates.io/crates/pour)
[![Downloads](https://img.shields.io/crates/d/pour)](https://crates.io/crates/pour)
[![Documentation](https://docs.rs/pour/badge.svg)](https://docs.rs/pour/)
[![Pipeline status](https://gitlab.com/tekne/pour/badges/master/pipeline.svg)](https://gitlab.com/tekne/pour)
[![codecov](https://codecov.io/gl/tekne/pour/branch/\x6d6173746572/graph/badge.svg?token=N7O4T3PAFA)](https://codecov.io/gl/tekne/pour/)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)

`pour` is an implementation of an immutable `IdMap`: it maps bitvector IDs to values using a radix trie.

Since these `IdMap`s are immutable, they can share a *lot* of data between them, and hash-consing can be used to increase the
degree of sharing between `IdMap`s. More interestingly, this data structure is designed to support asymptotically fast set operations
on hash-consed `IdMaps`, including:
- Unions, intersections, (symmetric) differences, and complements
- Subset/superset checks

The best part is, the more memory shared, the faster these operations become in the general case (though the specialized `ptr`
variants of these operations may return *incorrect* values on non hash-consed, i.e. maximally shared, inputs!) To allow user
customized hash-consing strategies, the internal `Arc`s behind this data structure can be exposed as opaque objects which the
user may manipulate using the `ConsCtx` trait. Alternatively, `()` implements `SetCtx` with no consing, and there are helpers
to perform set operations without consing.

There are also some nice implementation details (which *may change*), including:
- `IdMap<K, V>` and hence `IdSet<K>` are the size of a pointer.
- `NonEmptyIdMap<K, V>` and hence `NonEmptyIdSet<K>` are the size of a pointer
*and* null-pointer optimized, i.e. `Option<NonEmptySet<T>>` is also the size of a pointer.

Right now, the feature-set is deliberately kept somewhat minimal, as `pour` has a particular use case (the `rain` intermediate
representation). But if I have time and/or anyone wants to contribute, all kinds of things can be added! Examples of potential
**future** features include
- Map not just from integer keys but from integer ranges, with similar efficiency
- Union maps of different types

`pour` is currently implemented without any `unsafe`, though that may change. We do, however use the non-standard `elysees` `Arc`
implementation (a fork of Servo's `triomphe` by the author) to avoid weak reference counts.

NOTE: "levels" are currently not yet supported! Returning a level number greater than 0 will cause a panic!

Contributions, questions, and issues are welcome! Please file issues at https://gitlab.com/tekne/pour, and contact the author at
jad.ghalayini@gtc.ox.ac.uk for any other queries.
*/
#![forbid(unsafe_code, missing_debug_implementations, missing_docs)]
use elysees::Arc;
use num_traits::{int::PrimInt, AsPrimitive, ToPrimitive};
use ref_cast::RefCast;
use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;

mod inner;
mod map_impls;
mod util;

pub use inner::{IdMapIntoIter, IdMapIter, InnerMap};
pub use util::*;

pub mod map_ctx;
pub mod mutation;
use mutation::*;

/// An immutable, optionally hash-consed pointer-sized map from small integer keys to arbitrary data
#[derive(Debug, Clone)]
#[repr(transparent)]
pub struct IdMap<K: RadixKey, V: Clone>(Option<Arc<InnerMap<K, V>>>);

/// An immutable, optionally hash-consed pointer-sized set of small integer keys
pub type IdSet<K> = IdMap<K, ()>;

impl<K: RadixKey, V: Clone> IdMap<K, V> {
    /// A constant representing an empty map
    pub const EMPTY: IdMap<K, V> = IdMap(None);
    /// Create a new, empty map
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let empty = IdMap::<u64, u64>::new();
    /// assert!(empty.is_empty());
    /// assert_eq!(empty.len(), 0);
    /// assert_eq!(empty, IdMap::new());
    /// ```
    pub fn new() -> IdMap<K, V> {
        IdMap(None)
    }
    /// Clear this map, returning it's `InnerMap` if it was nonempty
    pub fn clear(&mut self) -> Option<Arc<InnerMap<K, V>>> {
        let mut result = None;
        std::mem::swap(&mut self.0, &mut result);
        result
    }
    /// Create a new mapping containing a single element in a given context
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// # use pour::map_ctx::MapCtx;
    /// let mut ctx1 = MapCtx::<u64, u64>::default();
    /// let mut ctx2 = MapCtx::<u64, u64>::default();
    /// let x = IdMap::singleton_in(5, 7, &mut ctx1);
    /// let y = IdMap::singleton_in(5, 7, &mut ctx2);
    /// let z = IdMap::singleton_in(5, 7, &mut ctx1);
    /// assert_eq!(x, y);
    /// assert_eq!(x, z);
    /// assert_ne!(x.as_ptr(), y.as_ptr());
    /// assert_eq!(x.as_ptr(), z.as_ptr());
    /// ```
    pub fn singleton_in<C: ConsCtx<K, V>>(key: K, value: V, ctx: &mut C) -> IdMap<K, V> {
        IdMap(Some(ctx.cons(InnerMap::singleton(key, value))))
    }
    /// Get the pointer underlying this map
    ///
    /// This pointer is guaranteed to be null if and only if the map is empty
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert_eq!(x.as_ptr(), std::ptr::null());
    /// x.try_insert(3, 5);
    /// assert_ne!(x.as_ptr(), std::ptr::null());
    /// let mut y = IdMap::singleton(3, 5);
    /// assert_ne!(y.as_ptr(), std::ptr::null());
    /// assert_ne!(x.as_ptr(), y.as_ptr());
    /// assert_eq!(x, y);
    /// ```
    pub fn as_ptr(&self) -> *const InnerMap<K, V> {
        self.0.as_ref().map(Arc::as_ptr).unwrap_or(std::ptr::null())
    }
    /// Check whether two `IdMap`s are pointer-equal, i.e. point to the same data
    pub fn ptr_eq(&self, other: &Self) -> bool {
        self.as_ptr() == other.as_ptr()
    }
    /// Create a new mapping containing a single element
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, "Hello");
    /// assert_eq!(x.len(), 1);
    /// assert_eq!(x.get(&3), Some(&"Hello"));
    /// assert_eq!(x.get(&2), None);
    /// ```
    pub fn singleton(key: K, value: V) -> IdMap<K, V> {
        Self::singleton_in(key, value, &mut ())
    }
    /// Check whether this map is empty
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.is_empty());
    /// x.try_insert(5, 33);
    /// assert!(!x.is_empty());
    /// x.remove(&5);
    /// assert!(x.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.0.is_none()
    }
    /// Get the number of entries in this map
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert_eq!(x.len(), 0);
    /// x.try_insert(7, 3);
    /// assert_eq!(x.len(), 1);
    /// x.try_insert(3, 2);
    /// assert_eq!(x.len(), 2);
    /// x.try_insert(2, 1);
    /// assert_eq!(x.len(), 3);
    /// x.remove(&2);
    /// assert_eq!(x.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        self.0.as_ref().map(|inner| inner.len()).unwrap_or(0)
    }
    /// Iterate over the entries in this map
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// x.try_insert(5, "what");
    /// x.try_insert(3, "buy");
    /// x.try_insert(7, "sell");
    /// let mut v: Vec<_> = x.iter().collect();
    /// v.sort_unstable();
    /// assert_eq!(&v[..], &[
    ///     (&3, &"buy"),
    ///     (&5, &"what"),
    ///     (&7, &"sell"),
    /// ])
    /// ```
    pub fn iter(&self) -> IdMapIter<K, V> {
        let mut result = IdMapIter::empty();
        if let Some(inner) = &self.0 {
            result.root(inner)
        }
        result
    }
    /// Lookup and mutate an entry of an `IdMap` in a given context. Return a new map if any changes were made.
    ///
    /// If it exists, the value is passed to the callback. If not, `None` is passed in it's place.
    /// The mutation returned from the callback is returned, along with the other result.
    pub fn mutate_in<B, M, R, C>(&self, key: B, action: M, ctx: &mut C) -> (Option<IdMap<K, V>>, R)
    where
        B: Borrow<K>,
        M: FnOnce(B, Option<&V>) -> (Mutation<K, V>, R),
        C: ConsCtx<K, V>,
    {
        if let Some(inner) = &self.0 {
            let (try_inner, result) = inner.mutate(inner, key, action, ctx);
            if let Some(inner) = try_inner {
                (Some(inner.into_idmap_in(ctx)), result)
            } else {
                (None, result)
            }
        } else {
            let (mutation, result) = action(key, None);
            let new_map = match mutation {
                Mutation::Null => None,
                Mutation::Remove => None,
                Mutation::Update(_) => None,
                Mutation::Insert(key, value) => Some(IdMap::singleton(key, value)),
            };
            (new_map, result)
        }
    }
    /// Lookup and mutate an entry of an `IdMap`. Return a new map if any changes were made.
    ///
    /// If it exists, the value is passed to the callback. If not, `None` is passed in it's place.
    /// The mutation returned from the callback is returned, along with the other result.
    pub fn mutate<B, M, R>(&self, key: B, action: M) -> (Option<IdMap<K, V>>, R)
    where
        B: Borrow<K>,
        M: FnOnce(B, Option<&V>) -> (Mutation<K, V>, R),
    {
        self.mutate_in(key, action, &mut ())
    }
    /// Remove an entry from an `IdMap` in a given context: return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 5);
    /// assert_eq!(x.removed_in(&3, &mut ()), Some(IdMap::new()));
    /// assert_eq!(x.removed_in(&5, &mut ()), None);
    /// ```
    pub fn removed_in<C: ConsCtx<K, V>>(&self, key: &K, ctx: &mut C) -> Option<IdMap<K, V>> {
        self.mutate_in(key, |_key, _value| (Mutation::Remove, ()), ctx)
            .0
    }
    /// Remove an entry from an `IdMap`: return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 5);
    /// assert_eq!(x.removed(&3), Some(IdMap::new()));
    /// assert_eq!(x.removed(&5), None);
    /// ```
    pub fn removed(&self, key: &K) -> Option<IdMap<K, V>> {
        self.removed_in(key, &mut ())
    }
    /// Remove an entry from an `IdMap` in a given context, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::singleton(3, 5);
    /// let y = x.clone();
    /// assert!(!x.remove_in(&5, &mut ()));
    /// assert_eq!(x, y);
    /// assert!(x.remove_in(&3, &mut ()));
    /// assert_eq!(x, IdMap::new());
    /// ```
    pub fn remove_in<C: ConsCtx<K, V>>(&mut self, key: &K, ctx: &mut C) -> bool {
        if let Some(removed) = self.removed_in(key, ctx) {
            *self = removed;
            true
        } else {
            false
        }
    }
    /// Remove an entry from an `IdMap`, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///  
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::singleton(3, 5);
    /// let y = x.clone();
    /// assert!(!x.remove(&5));
    /// assert_eq!(x, y);
    /// assert!(x.remove(&3));
    /// assert_eq!(x, IdMap::new());
    /// ```
    pub fn remove(&mut self, key: &K) -> bool {
        if let Some(removed) = self.removed(key) {
            *self = removed;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap` in a given context, *replacing the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(
    ///     x.inserted_in(3, 5, &mut ()),
    ///     Some(IdMap::singleton(3, 5))
    /// );
    /// let y = x.inserted_in(4, 5, &mut ()).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    pub fn inserted_in<C: ConsCtx<K, V>>(
        &self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> Option<IdMap<K, V>> {
        self.mutate_in(
            key,
            |key, old_value| {
                (
                    if old_value.is_none() {
                        Mutation::Insert(key, value)
                    } else {
                        Mutation::Update(value)
                    },
                    (),
                )
            },
            ctx,
        )
        .0
    }
    /// Insert an entry into an `IdMap`, *replacing the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(
    ///     x.inserted(3, 5),
    ///     Some(IdMap::singleton(3, 5))
    /// );
    /// let y = x.inserted(4, 5).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    /// ```
    pub fn inserted(&self, key: K, value: V) -> Option<IdMap<K, V>> {
        self.inserted_in(key, value, &mut ())
    }
    /// Insert an entry into an `IdMap` in a given context, *replacing the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.insert_in(3, 2, &mut ()));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(x.insert_in(3, 5, &mut ()));
    /// assert_eq!(x.get(&3), Some(&5));
    /// ```
    pub fn insert_in<C: ConsCtx<K, V>>(&mut self, key: K, value: V, ctx: &mut C) -> bool {
        if let Some(inserted) = self.inserted_in(key, value, ctx) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap`, *replacing the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.insert(3, 2));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(x.insert(3, 5));
    /// assert_eq!(x.get(&3), Some(&5));
    /// ```
    pub fn insert(&mut self, key: K, value: V) -> bool {
        if let Some(inserted) = self.inserted(key, value) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap` in a given context, *keeping the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(x.try_inserted_in(3, 5, &mut ()), None);
    /// let y = x.try_inserted_in(4, 5, &mut ()).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    pub fn try_inserted_in<C: ConsCtx<K, V>>(
        &self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> Option<IdMap<K, V>> {
        self.mutate_in(key, |key, _value| (Mutation::Insert(key, value), ()), ctx)
            .0
    }
    /// Insert an entry into an `IdMap`, *keeping the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(x.try_inserted(3, 5), None);
    /// let y = x.try_inserted(4, 5).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    /// ```
    pub fn try_inserted(&self, key: K, value: V) -> Option<IdMap<K, V>> {
        self.try_inserted_in(key, value, &mut ())
    }
    /// Insert an entry into an `IdMap` in a given context, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.try_insert_in(3, 2, &mut ()));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(!x.try_insert_in(3, 5, &mut ()));
    /// assert_eq!(x.get(&3), Some(&2));
    /// ```
    pub fn try_insert_in<C: ConsCtx<K, V>>(&mut self, key: K, value: V, ctx: &mut C) -> bool {
        if let Some(inserted) = self.try_inserted_in(key, value, ctx) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap`, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.try_insert(3, 2));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(!x.try_insert(3, 5));
    /// assert_eq!(x.get(&3), Some(&2));
    /// ```
    pub fn try_insert(&mut self, key: K, value: V) -> bool {
        if let Some(inserted) = self.try_inserted(key, value) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Lookup an entry of an `IdMap`, returning the value associated with it, if any
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::singleton(3, 5);
    /// assert_eq!(x.get(&3), Some(&5));
    /// assert_eq!(x.get(&2), None);
    /// x.try_insert(2, 4);
    /// assert_eq!(x.get(&2), Some(&4));
    /// x.insert_conservative(2, 2);
    /// assert_eq!(x.get(&2), Some(&2));
    /// ```
    pub fn get(&self, key: &K) -> Option<&V> {
        if let Some(inner) = &self.0 {
            inner.get(key)
        } else {
            None
        }
    }
    /// Lookup whether an item is contained in an `IdMap`.
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(7, 3);
    /// assert!(x.contains(&7));
    /// assert!(!x.contains(&3));
    /// ```
    pub fn contains(&self, key: &K) -> bool {
        self.get(key).is_some()
    }
    /// Mutate the values of a map in a given context. Return `Some` if something changed.
    ///
    /// # Example
    /// ```rust
    /// # use pour::{IdMap, mutation::FilterMap};
    /// let x = IdMap::singleton(3, 5);
    /// let mut mutator = FilterMap::new(
    ///     |key, value| if key == value { None } else { Some(key * value) }
    /// );
    /// let y = x.mutated_vals_in(&mut mutator, &mut ());
    /// assert_eq!(y, Some(IdMap::singleton(3, 15)));
    /// ```
    pub fn mutated_vals_in<M, C>(&self, mutator: &mut M, ctx: &mut C) -> Option<IdMap<K, V>>
    where
        M: UnaryMutator<K, V>,
        C: ConsCtx<K, V>,
    {
        match (mutator.kind(), &self.0) {
            (UnaryMutatorKind::Null, _) => None,
            (_, None) => None,
            (UnaryMutatorKind::Delete, Some(_)) => Some(IdMap::new()),
            (UnaryMutatorKind::General, Some(inner)) => {
                let inner = inner.mutate_vals_in(mutator, ctx)?;
                Some(inner.into_idmap_in(ctx))
            }
        }
    }
    /// Mutate the values of a map. Return `Some` if something changed.
    #[inline]
    pub fn mutated_vals<M>(&self, mutator: &mut M) -> Option<IdMap<K, V>>
    where
        M: UnaryMutator<K, V>,
    {
        self.mutated_vals_in(mutator, &mut ())
    }
    /// Mutate the values of a map. Return if something changed.
    #[inline]
    pub fn mutate_vals_in<M, C>(&mut self, mutator: &mut M, ctx: &mut C) -> bool
    where
        M: UnaryMutator<K, V>,
        C: ConsCtx<K, V>,
    {
        if let Some(mutated) = self.mutated_vals_in(mutator, ctx) {
            *self = mutated;
            true
        } else {
            false
        }
    }
    /// Mutate the values of a map. Return if something changed.
    ///
    /// # Examples
    /// ```rust
    /// # use pour::IdMap;
    /// # use pour::mutation::{NullMutator, DeleteMutator, FilterMap};
    /// let mut x = IdMap::new();
    /// for i in 0..100 {
    ///     x.try_insert(i, 3);
    /// }
    ///
    /// let mut y = x.clone();
    /// assert!(!y.mutate_vals(&mut NullMutator));
    /// assert_eq!(x.as_ptr(), y.as_ptr());
    ///
    /// let mut mutator = FilterMap::new(
    ///     |key, value| if *key < 30 { None } else { Some(*key * *value) }
    /// );
    /// assert!(y.mutate_vals(&mut mutator));
    /// assert_ne!(x, y);
    /// assert_eq!(y.len(), 70);
    /// assert_eq!(x.get(&4), Some(&3));
    /// assert_eq!(y.get(&4), None);
    /// assert_eq!(x.get(&40), Some(&3));
    /// assert_eq!(y.get(&40), Some(&120));
    ///
    /// assert!(x.mutate_vals(&mut mutator));
    /// assert_ne!(x.as_ptr(), y.as_ptr());
    /// assert_eq!(x, y);
    ///
    /// assert!(y.mutate_vals(&mut DeleteMutator));
    /// assert!(y.is_empty());
    /// ```
    #[inline]
    pub fn mutate_vals<M>(&mut self, mutator: &mut M) -> bool
    where
        M: UnaryMutator<K, V>,
    {
        if let Some(mutated) = self.mutated_vals_in(mutator, &mut ()) {
            *self = mutated;
            true
        } else {
            false
        }
    }
    /*
    /// Transform the values of a map in a given context.
    pub fn transformed_vals_in<T, O, C>(&self, transformer: &mut T, ctx: &mut C) -> IdMap<K, O>
    where
        O: Clone,
        T: UnaryTransformer<K, V, O>,
        C: ConsCtx<K, O>,
    {
        if let Some(inner) = &self.0 {
            unimplemented!("Inner transformation @ {:p}", inner)
        } else {
            // No keys to transform!
            IdMap::new()
        }
    }
    */
    /// Join-mutate two maps by applying a binary mutator to their key intersection and unary
    /// mutators to their left and right intersection. If `cons` is true, the maps are assumed to
    /// be consistently hash-consed (i.e. an `InnerMap` in one map is `rec_eq` to one in another map
    /// if and only if they are pointer-equal, i.e. compare equal with `==`), which can provide
    /// additional speedup. Return `Some` if something changed.
    pub fn join_mutate_in<IM, LM, RM, C>(
        &self,
        other: &Self,
        intersection_mutator: &mut IM,
        left_mutator: &mut LM,
        right_mutator: &mut RM,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>>
    where
        IM: BinaryMutator<K, V>,
        LM: UnaryMutator<K, V>,
        RM: UnaryMutator<K, V>,
        C: ConsCtx<K, V>,
    {
        let (this, other) = match (&self.0, &other.0) {
            (_, None) => return BinaryResult::or_left(self.mutated_vals_in(left_mutator, ctx)),
            (None, _) => return BinaryResult::or_right(other.mutated_vals_in(right_mutator, ctx)),
            (Some(this), Some(other)) => (this, other),
        };
        this.join_mutate_in(
            other,
            intersection_mutator,
            left_mutator,
            right_mutator,
            ctx,
        )
        .map(|inner| inner.into_idmap_in(ctx))
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_union_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersect_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_union(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersect(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the right value
    pub fn right_union_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the intersection of two maps, taking the right value in case of conflict
    pub fn right_intersect_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the right value
    pub fn right_union(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn right_intersect(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn union_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersect_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diff_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut DeleteMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn left_complement_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the complement of this map's *keys* with respect to another's *entries*
    pub fn right_complement_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the complement of this map' with another, arbitrarily returning this map's or the other's values on the intersection!
    pub fn complement_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn union(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersect(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diff(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut DeleteMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn left_complement(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the complement of this map's *keys* with respect to another's *entries*
    pub fn right_complement(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the complement of this map' with another, arbitrarily returning this map's or the other's values on the intersection!
    pub fn complement(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_unioned_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.left_union_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersected_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.left_intersect_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_unioned(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.left_union(other).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersected(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.left_intersect(other).unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn right_unioned_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.right_union_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn right_intersected_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.right_intersect_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn right_unioned(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.right_union(other).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn right_intersected(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.right_intersect(other).unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn unioned_in<C: ConsCtx<K, V>>(&self, other: &IdMap<K, V>, ctx: &mut C) -> IdMap<K, V> {
        self.union_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersected_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.intersect_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diffed_in<C: ConsCtx<K, V>>(&self, other: &IdMap<K, V>, ctx: &mut C) -> IdMap<K, V> {
        self.sym_diff_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn left_complemented_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.left_complement_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn right_complemented_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.right_complement_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn complemented_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.complement_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn unioned(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.union(other).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersected(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.intersect(other).unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diffed(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.sym_diff(other).unwrap_or_clone(self, other)
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn left_complemented(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.left_complement(other).unwrap_or_clone(self, other)
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn complemented(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.complement(other).unwrap_or_clone(self, other)
    }
    /*
    /// Join-transform two maps by applying a binary transformer to their key intersection and
    /// unary transformers to their left and right intersection.
    pub fn join_transform_in<R, O, IT, LT, RT, C>(
        &self,
        other: &IdMap<K, R>,
        intersection_transformer: &mut IT,
        left_transformer: &mut LT,
        right_transformer: &mut RT,
        ctx: &mut C,
    ) -> IdMap<K, O>
    where
        O: Clone,
        R: Clone + Eq,
        IT: BinaryTransformer<K, V, R, O>,
        LT: UnaryTransformer<K, V, O>,
        RT: UnaryTransformer<K, R, O>,
        C: ConsCtx<K, O>,
    {
        let (this, other) = match (&self.0, &other.0) {
            (_, None) => return self.transformed_vals_in(left_transformer, ctx),
            (None, _) => return other.transformed_vals_in(right_transformer, ctx),
            (Some(this), Some(other)) => (this, other),
        };
        unimplemented!(
            "General transformation for this@{:p}, other@{:p}",
            this,
            other
        )
    }
    */
}

impl<K: RadixKey, V: Clone + Eq> IdMap<K, V> {
    /// Insert an entry of an `IdMap` in a given context, *updating the old value* if one was already there.
    /// Return a new map if any changes were made
    pub fn inserted_conservative_in<C: ConsCtx<K, V>>(
        &self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> Option<IdMap<K, V>> {
        self.mutate_in(
            key,
            |key, entry_value| {
                let mutation = match entry_value {
                    Some(entry_value) if *entry_value != value => Mutation::Update(value),
                    Some(_) => Mutation::Null,
                    None => Mutation::Insert(key, value),
                };
                (mutation, ())
            },
            ctx,
        )
        .0
    }
    /// Insert an entry of an `IdMap`, *updating the old value* if one was already there.
    /// Return a new map if any changes were made
    pub fn inserted_conservative(&self, key: K, value: V) -> Option<IdMap<K, V>> {
        self.inserted_conservative_in(key, value, &mut ())
    }
    /// Insert an entry into an `IdMap` in a given context, *updating the old value* if one was already there.
    /// Return whether any changes were made
    pub fn insert_conservative_in<C: ConsCtx<K, V>>(
        &mut self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> bool {
        if let Some(inserted_conservative) = self.inserted_conservative_in(key, value, ctx) {
            *self = inserted_conservative;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap`, *updating the old value* if one was already there.
    /// Return whether any changes were made
    pub fn insert_conservative(&mut self, key: K, value: V) -> bool {
        if let Some(inserted_conservative) = self.inserted_conservative(key, value) {
            *self = inserted_conservative;
            true
        } else {
            false
        }
    }
    /// Check whether this map is a submap of another. A map is considered to be a submap of itself.
    ///
    /// If `cons` is true, this map is assumed to be hash-consed with the other
    pub fn is_submap(&self, other: &IdMap<K, V>, cons: bool) -> bool {
        match (&self.0, &other.0) {
            (Some(this), Some(other)) => {
                if Arc::ptr_eq(this, other) {
                    true
                } else if cons && this.len() == other.len() {
                    false
                } else {
                    this.is_submap(other, cons)
                }
            }
            (Some(_), None) => false,
            (None, Some(_)) => true,
            (None, None) => true,
        }
    }
    /// Check whether this map's domain is a subset of another's.
    pub fn domain_is_subset<U: Clone + Eq>(&self, other: &IdMap<K, U>) -> bool {
        match (&self.0, &other.0) {
            (Some(this), Some(other)) => this.domain_is_subset(other),
            (Some(_), None) => false,
            (None, Some(_)) => true,
            (None, None) => true,
        }
    }
    /// Check whether this map's domain has a nonempty intersection with another map's
    ///
    /// # Example
    ///
    /// ```rust
    /// # use pour::{IdSet, IdMap};
    /// let mut a = IdSet::new();
    /// for i in 0..10 {
    ///     a.try_insert(i, ());
    /// }
    /// let mut b = IdSet::new();
    /// for i in 5..20 {
    ///     b.try_insert(i, ());
    /// }
    /// let mut c = IdMap::new();
    /// for i in 10..20 {
    ///     c.try_insert(i, 3*i);
    /// }
    /// assert!(a.domains_intersect(&a));
    /// assert!(b.domains_intersect(&b));
    /// assert!(c.domains_intersect(&c));
    /// assert!(a.domains_intersect(&b));
    /// assert!(b.domains_intersect(&a));
    /// assert!(b.domains_intersect(&c));
    /// assert!(c.domains_intersect(&b));
    /// assert!(!a.domains_intersect(&c));
    /// assert!(!c.domains_intersect(&a));
    /// ```
    pub fn domains_intersect<U: Clone + Eq>(&self, other: &IdMap<K, U>) -> bool {
        match (&self.0, &other.0) {
            (Some(this), Some(other)) => this.domains_intersect(other),
            _ => false,
        }
    }
    /// Check whether two maps have disjoint domains
    ///
    /// # Example
    ///
    /// ```rust
    /// # use pour::{IdSet, IdMap};
    /// let mut a = IdSet::new();
    /// for i in 100..1000 {
    ///     a.try_insert(i, ());
    /// }
    /// let mut b = IdMap::new();
    /// for i in 50..2000 {
    ///     b.try_insert(i, 2*i);
    /// }
    /// let mut c = IdSet::new();
    /// for i in 1500..2500 {
    ///     c.try_insert(i, ());
    /// }
    /// assert!(!a.domains_disjoint(&a));
    /// assert!(!b.domains_disjoint(&b));
    /// assert!(!c.domains_disjoint(&c));
    /// assert!(!a.domains_disjoint(&b));
    /// assert!(!b.domains_disjoint(&a));
    /// assert!(!b.domains_disjoint(&c));
    /// assert!(!c.domains_disjoint(&b));
    /// assert!(a.domains_disjoint(&c));
    /// assert!(c.domains_disjoint(&a));
    /// ```
    pub fn domains_disjoint<U: Clone + Eq>(&self, other: &IdMap<K, U>) -> bool {
        !self.domains_intersect(other)
    }
    /// Partially order maps based off the submap relation
    pub fn map_cmp(&self, other: &IdMap<K, V>, cons: bool) -> Option<Ordering> {
        use Ordering::*;
        match self.len().cmp(&other.len()) {
            Less if self.is_submap(other, cons) => Some(Less),
            Equal if !cons && self == other => Some(Equal),
            Equal if cons && self.ptr_eq(other) => Some(Equal),
            Greater if other.is_submap(self, cons) => Some(Greater),
            _ => None,
        }
    }
    /// Partially order the domains of maps based off the subset relation
    pub fn domain_cmp(&self, other: &IdMap<K, V>) -> Option<Ordering> {
        use Ordering::*;
        match self.len().cmp(&other.len()) {
            Greater if other.domain_is_subset(self) => Some(Greater),
            ord if self.domain_is_subset(other) => Some(ord),
            _ => None,
        }
    }
}

/// A trait implemented by objects which can perform hash-consing on a map's internal data
pub trait ConsCtx<K: RadixKey, V: Clone> {
    /// Return an `Arc<InnerMap>` with the same contents as the provided `Arc`
    ///
    /// # Correctness
    /// The resulting `Arc` should compare equal to `inner` if they are comparable.
    /// If not, being the result of `clone` is fine.
    fn cons_arc(&mut self, inner: &Arc<InnerMap<K, V>>) -> Arc<InnerMap<K, V>>;
    /// Return an `Arc<InnerMap>` with the same contents as the provided object.
    ///
    /// # Correctness
    /// The resulting `Arc` should compare equal to `inner` if they are comparable.
    /// If not, being the result of `new` is fine.
    fn cons(&mut self, inner: InnerMap<K, V>) -> Arc<InnerMap<K, V>>;
    /// Return an `Arc<InnerMap>` with the same contents as the provided `Arc`
    ///
    /// Note: this is provided as a separate function from `cons_arc` to allow the user the choice as
    /// to whether to perform deep or shallow hash-consing of mutated values: if shallow hash-consing
    /// is desired, this method should just clone the input `Arc`, whereas if deep hash-consing is
    /// desired, this method should return another, potentially hash-consed `Arc`. Deep hash-consing
    /// is the default, so `cons_arc` is called by the default implementation.
    ///
    /// # Correctness
    /// The resulting `Arc` should compare equal to `inner` if they are comparable.
    /// If not, being the result of `clone` is fine.
    fn cons_recursive(&mut self, inner: &Arc<InnerMap<K, V>>) -> Arc<InnerMap<K, V>> {
        self.cons_arc(inner)
    }
}

/// A key which can be used in a radix trie
pub trait RadixKey: Eq + Clone {
    /// The pattern type of this radix key
    type PatternType: Pattern<Self::DepthType>;
    /// The depth type of this radix key
    ///
    /// We assume this can be losslessly `as_` casted into `usize`, with all valid values casting back from usize
    type DepthType: PrimInt + Hash + AsPrimitive<usize>;
    /// A function to get the pattern of data for this key corresponding to a given bitdepth.
    fn pattern(&self, depth: Self::DepthType) -> Self::PatternType;
    /// Get the pattern number of a given bitdepth
    ///
    /// NOTE: "levels" are currently not yet supported! Returning a pattern number greater than 0 will cause a panic!
    fn pattern_no(depth: Self::DepthType) -> usize {
        let depth: usize = depth.as_();
        depth / Self::PatternType::MAX_BITS
    }
}

/// An n-bit pattern
pub trait Pattern<D>: Eq + Hash + Copy + Clone + Default {
    /// Get the maximum bitdepth of this pattern
    const MAX_BITS: usize;
    /// Get this pattern's max bits as a depth type
    fn max_bits() -> D;
    /// Get the nth byte of this pattern at a given bitdepth
    fn byte(self, n: D) -> u8;
    /// Get the bit difference between this pattern and another
    fn diff(self, other: Self) -> D;
}

#[cfg(test)]
mod test {
    use super::*;
    use map_ctx::*;

    fn ordered_map_construction_in_ctx<C: ConsCtx<u64, u64>>(
        n: u64,
        ctx: &mut C,
    ) -> IdMap<u64, u64> {
        let mut x = IdMap::new();
        let mut v = Vec::with_capacity(n as usize);
        for i in 0..n {
            assert_eq!(
                x.get(&i),
                None,
                "{} has not already been inserted into {:#?}",
                i,
                x
            );
            assert!(
                x.try_insert_in(i, 2 * i, ctx),
                "{} has not already been inserted into {:#?}",
                i,
                x
            );
            assert_eq!(
                x.get(&i),
                Some(&(2 * i)),
                "{} has already been inserted into {:#?}",
                i,
                x
            );
            assert!(
                !x.try_insert_in(i, 3 * i, ctx),
                "{} has already had a value set in {:#?}",
                i,
                x
            );
            assert_eq!(
                x.get(&i),
                Some(&(2 * i)),
                "{} has already been inserted into {:#?}",
                i,
                x
            );
            assert!(
                x.insert_conservative_in(i, 3 * i, ctx) || i == 0,
                "{} can be inserted_conservative in {:#?}",
                i,
                x
            );
            assert_eq!(
                x.get(&i),
                Some(&(3 * i)),
                "{} has already been inserted into {:#?}",
                i,
                x
            );
            v.push((i, 3 * i));
        }
        let mut xv: Vec<_> = x.iter().map(|(k, v)| (*k, *v)).collect();
        xv.sort_unstable();
        assert_eq!(xv, v);
        xv = x.clone().into_iter().collect();
        xv.sort_unstable();
        assert_eq!(xv, v);
        x
    }

    #[test]
    fn medium_map_construction() {
        let x = ordered_map_construction_in_ctx(1000, &mut ());
        let y = ordered_map_construction_in_ctx(1000, &mut ());
        assert_ne!(x.as_ptr(), y.as_ptr());
        assert_eq!(x, y);
    }

    #[test]
    fn medium_map_construction_in_ctx() {
        let mut ctx = MapCtx::new();
        let x = ordered_map_construction_in_ctx(1000, &mut ctx);
        let y = ordered_map_construction_in_ctx(1000, &mut ctx);
        assert_eq!(x, y);
        assert_eq!(x.as_ptr(), y.as_ptr());
    }

    #[test]
    fn small_non_consed_map_set_ops() {
        let mut x = IdMap::new();
        x.try_insert(3, 6);
        x.try_insert(5, 7);
        x.try_insert(9, 2);
        let mut y = IdMap::new();
        y.try_insert(3, 5);
        y.try_insert(2, 42);
        y.try_insert(134, 23);
        let z = match x.left_union(&y) {
            BinaryResult::New(z) => z,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(z, x.left_unioned(&y));
        assert_eq!(z.get(&2), Some(&42));
        assert_eq!(z.get(&3), Some(&6));
        assert_eq!(z.get(&4), None);
        assert_eq!(z.get(&5), Some(&7));
        assert_eq!(z.get(&134), Some(&23));
        assert_eq!(z.len(), 5);
        let w = match x.left_intersect(&y) {
            BinaryResult::New(w) => w,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(w.get(&3), Some(&6));
        assert_eq!(w.len(), 1);
    }

    #[test]
    fn small_consed_set_ops() {
        let mut ctx = MapCtx::new();
        let mut x = IdMap::new();
        x.try_insert_in(3, 6, &mut ctx);
        x.try_insert_in(5, 7, &mut ctx);
        x.try_insert_in(9, 2, &mut ctx);
        let mut y = IdMap::new();
        y.try_insert_in(3, 5, &mut ctx);
        y.try_insert_in(2, 42, &mut ctx);
        y.try_insert_in(134, 23, &mut ctx);
        let z = match x.left_union_in(&y, &mut ctx) {
            BinaryResult::New(z) => z,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(z.as_ptr(), x.left_unioned_in(&y, &mut ctx).as_ptr());
        assert_eq!(z, x.left_unioned(&y));
        assert_eq!(z.get(&2), Some(&42));
        assert_eq!(z.get(&3), Some(&6));
        assert_eq!(z.get(&4), None);
        assert_eq!(z.get(&5), Some(&7));
        assert_eq!(z.get(&134), Some(&23));
        assert_eq!(z.len(), 5);
        let w = match x.left_intersect_in(&y, &mut ctx) {
            BinaryResult::New(w) => w,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(w.get(&3), Some(&6));
        assert_eq!(w.len(), 1);
    }

    #[test]
    fn mapping_set_op() {
        let mut x = IdMap::new();
        x.try_insert(3, 4);
        x.try_insert(4, 2);
        x.try_insert(6, 31);
        x.try_insert(9, 2);
        let mut y = IdMap::new();
        y.try_insert(1, 24);
        y.try_insert(3, 1);
        y.try_insert(7, 2);
        y.try_insert(8, 31);
        y.try_insert(9, 3);
        let j = x
            .join_mutate_in(
                &y,
                &mut LeftMutator,
                &mut FilterMap::new(|_key, value| {
                    if value % 2 == 0 {
                        Some(7 * value)
                    } else {
                        None
                    }
                }),
                &mut NullMutator,
                &mut (),
            )
            .unwrap();
        let mut jr = IdMap::new();
        jr.try_insert(1, 24);
        jr.try_insert(3, 4);
        jr.try_insert(4, 2 * 7);
        jr.try_insert(7, 2);
        jr.try_insert(8, 31);
        jr.try_insert(9, 2);
        assert_eq!(j, jr);
    }

    #[test]
    fn small_usize_insert() {
        let mut map = IdMap::<usize, String>::new();
        let ix = 3;
        map.insert(ix, "Hello".to_string());
        assert_eq!(map.get(&ix).unwrap(), "Hello");
        eprintln!("Inner = {:#?}", map.0);
        map.insert(ix, "Goodbye".to_string());
        eprintln!("Inner = {:#?}", map.0);
        assert_eq!(map.get(&ix).unwrap(), "Goodbye");
    }

    #[test]
    fn big_usize_insert() {
        let mut map = IdMap::<usize, String>::new();
        let ix = 140220213234856;
        map.insert(ix, "Hello".to_string());
        assert_eq!(map.get(&ix).unwrap(), "Hello");
        eprintln!("Inner = {:#?}", map.0);
        map.insert(ix, "Goodbye".to_string());
        eprintln!("Inner = {:#?}", map.0);
        assert_eq!(map.get(&ix).unwrap(), "Goodbye");
    }
}