1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
//! Borrowing for futures - a bit like `Option`, but async and with a return channel.
//! A bit like a `Mutex`, compensating for `MutexGuard` not being safe to send.
//! The item is moved (leased) from the owner Potential into the Lease.
//! When the Lease is dropped, the item is sent back to the owner.
//! Owner of the Potential can await the return of the leased item.
//!
//! It is geared towards asynchronous servers. The use case is that
//! some resources can or should be reused, such as TCP connections
//! or crypto configuration or backend storage but they need to be
//! sent off with futures where there is no track of the _future_
//! of the shared resource unless &mut is used so single copy is
//! guaranteed, Mutex is used with a lifetime bound for the future
//! or you use Potential which allows you not to bind the future lifetime
//! to the source. Still, only one running future/task can use the resource
//! at a time. The owner can thus control the concurrency which is by default 1
//! and can be increased by resetting the Potential to a new value.
//!
//! If the lease is not dropped properly (such as if you `mem::forget()` it
//! or when its thread panics badly), the `Potential` calls will be stuck forever.
//! If you suspect that this may happen, await with a timeout to be able to recover.
//!
//! # Sync + Send future example
//!   Notice the mutation of String through immutable reference,
//!   initializing the potential through a lease,
//!   and that futures are Sync + Send.
//!   Futures on a lease naturally serialize (are mutually exclusive).
//! ```
//! use potential::Potential;
//! use std::future::Future;
//! use std::task::Poll;
//! use std::pin::Pin;
//! #[derive(Default)]
//! struct Trial {
//!     inner: Potential<String>
//! }
//! impl Trial {
//!     async fn back_to_the_future(&self, item:String) -> usize {
//!         let mut lease = match self.inner.lease().await {
//!             Ok(lease) => lease,
//!             Err(gone) => gone.set(String::new())
//!         };
//!         // here some other async work...
//!         lease.extend(item.chars());
//!         lease.len()
//!     }
//! }
//! async fn test(trial: &Trial) -> String {
//!     let fut2 = trial.back_to_the_future(" and then".to_owned());
//!     let fut1 = trial.back_to_the_future("now".to_owned());
//!     assert_eq!(fut1.await, 3);
//!     assert_eq!(fut2.await, 12);
//!     trial.inner.lease().await.expect("set").clone()
//! }
//! let trial = Trial::default();
//! let mut fut = test(&trial);
//! assert_eq!(Box::pin(fut).as_mut().poll(&mut cx()), Poll::Ready("now and then".to_owned()));
//!
//! is_sync_and_send(test(&trial));
//! fn is_sync_and_send<T: Sync + Send>(_: T) {};
//! fn cx() -> std::task::Context<'static> {
//!     let waker = futures_util::task::noop_waker_ref();
//!     let cx = std::task::Context::from_waker(waker);
//!     cx
//! };
//! ```
//!
//! # Example: 'static + Sync + Send future with Arc
//! Not sure how to pull this off with async fn sugar. Suggestions welcome.
//! Self must not be captured by the future for this to work.
//! ```
//! use potential::Potential;
//! use std::sync::Arc;
//! use std::future::Future;
//! #[derive(Default)]
//! struct Trial {
//!     inner: Arc<Potential<String>>
//! }
//! impl Trial {
//!     fn back_to_the_static_future(&self, item:String) -> Box<dyn Future<Output = usize> + 'static + Send + Sync> {
//!         let inner = self.inner.clone();
//!         let fut = async move {
//!             let mut lease = match inner.lease_on_arc().await {
//!                 Ok(lease) => lease,
//!                 Err(gone) => gone.set(String::new())
//!             };
//!             // here some other async work...
//!             lease.extend(item.chars());
//!             lease.len()
//!         };
//!         Box::new(fut)
//!     }
//! }
//! let trial = Trial::default();
//! let fut = trial.back_to_the_static_future("now".to_owned());
//! is_sync_and_send_and_static(fut);
//! fn is_sync_and_send_and_static<T: Sync + Send + 'static>(_: T) {};
//! ```

use futures_channel::oneshot::{channel as oneshot, Receiver, Sender};
use futures_util::lock::Mutex;
use log::debug;
use std::fmt;
use std::ops::{Deref, DerefMut};
use std::rc::Rc;
use std::sync::Arc;

/// The owner of an item leases it out or can access mutably if not leased.
#[derive(Default, Debug)]
pub struct Potential<T> {
    /// Potential state gated with a mutext to allow &ref access
    state: Mutex<State<T>>,
}
/// Represents the state of the potential within a mutex
#[derive(Debug)]
enum State<T> {
    /// The item is not leased and is with the owner
    Present(T),
    /// The item is currently leased, waiting for a return
    Leased(Receiver<T>),
    /// Transitional state to enable `mem::replace()` or state after stolen lease
    Gone,
}
impl<T> Default for State<T> {
    fn default() -> Self {
        Self::Gone
    }
}
impl<T> Potential<T> {
    /// Create new full Potential
    pub fn new(item: T) -> Self {
        let mut me = Potential::empty();
        me.set(item);
        me
    }
    /// Create new empty Potential
    pub fn empty() -> Self {
        Potential {
            state: Mutex::new(State::Gone),
        }
    }
    /// Check if the item is waiting for return of the lease right now
    pub fn is_leased(&self) -> bool {
        match self.state.try_lock().as_deref() {
            None => true,
            Some(State::Gone) => false,
            Some(State::Leased(_)) => true,
            Some(State::Present(_)) => false,
        }
    }
    /// Check if the item is present right now
    pub fn is_present(&self) -> bool {
        match self.state.try_lock().as_deref() {
            None => false,
            Some(State::Gone) => false,
            Some(State::Leased(_)) => false,
            Some(State::Present(_)) => true,
        }
    }
    /// Check if the item is gone right now
    pub fn is_empty(&self) -> bool {
        match self.state.try_lock().as_deref() {
            None => false,
            Some(State::Gone) => true,
            Some(State::Leased(_)) => false,
            Some(State::Present(_)) => false,
        }
    }
    /// Set the current item immediately regardles of lease.
    /// Sucessful lease will not return their item on drop.
    /// Pending and subsequent leases will pick the new value.
    /// ```rust
    /// # use potential::Potential;
    /// let mut potential = Potential::new("x");
    /// potential.set("y");
    /// ```
    /// To set through an immutable reference, feed it back through a lease. Call:
    /// ```rust
    /// # use potential::Potential;
    /// # let potential=Potential::new("x");
    /// # let value = "y";
    /// # let fut = async move {
    /// potential.lease().await?.replace(value);
    /// # Potential::empty().lease().await
    /// # };
    /// ```
    pub fn set(&mut self, item: T) {
        self.state = Mutex::new(State::Present(item));
    }
    // Reset the potential through returned Gone.
    // If you drop `Gone` it without setting it, Potential will be left empty.
    // It only awaits an internal mutex lock, not the return of a lease.
    // Previous lease will continue but will have nowhere to return the item.
    pub async fn reset(&self) -> Gone<T> {
        let mut state = self.state.lock().await;
        let (sender, receiver) = oneshot();
        *state = State::Leased(receiver);
        Gone::new(sender)
    }
    /// Sync + Send + 'static flavor of `lease()` if `Self` is in `Arc`
    pub async fn lease_on_arc(self: Arc<Self>) -> Result<Lease<T>, Gone<T>> {
        self.lease().await
    }
    /// 'static flavor of `lease()` if `Self` is in `Rc`
    pub async fn lease_on_rc(self: Rc<Self>) -> Result<Lease<T>, Gone<T>> {
        self.lease().await
    }
    /// Wait for the item to be available and then access the mutable reference if available.
    /// This call will return None if previous Lease failed to return the item or if created `empty()`.
    /// If that happens, set a new potential.
    ///
    /// Example:
    /// ```rust
    /// # use potential::Potential;
    /// let mut potential = Potential::new(String::new());
    /// # let fut = async move {
    /// potential.get_mut().await?.push('A');
    /// # Some(())
    /// # };
    /// ```
    pub async fn get_mut(&mut self) -> Option<&mut T> {
        let state = self.state.get_mut();
        loop {
            break match state {
                State::Gone => None,
                State::Present(present) => Some(present),
                State::Leased(receiver) => {
                    *state = Self::await_return(receiver).await;
                    continue;
                }
            };
        }
    }
    /// Wait for the return of the item and if available, lease it.
    /// This call will return Err(Gone) if previous Lease failed to return the item or if created `empty()`.
    /// If that happens, set a new potential on the Gone.
    ///
    /// Example:
    /// ```rust
    /// # use potential::Potential;
    /// let mut potential = Potential::new(String::new());
    /// # let fut = async move {
    /// potential.lease().await?.push('A');
    /// # Potential::empty().lease().await
    /// # };
    /// ```
    ///
    /// Example of empty potential:
    /// ```rust
    /// # use potential::Potential;
    /// let mut potential = Potential::empty();
    /// # let fut = async move {
    /// let mut lease = match potential.lease().await {
    ///     Err(gone) => gone.set(String::new()),
    ///     Ok(lease) => lease
    /// };
    /// lease.push('A');
    /// # };
    /// ```
    pub async fn lease(&self) -> Result<Lease<T>, Gone<T>> {
        let mut state = self.state.lock().await;
        loop {
            break match std::mem::replace(state.deref_mut(), State::Gone) {
                State::Gone => {
                    let (sender, receiver) = oneshot();
                    *state = State::Leased(receiver);
                    Err(Gone::new(sender))
                }
                State::Present(item) => {
                    let (sender, receiver) = oneshot();
                    *state = State::Leased(receiver);
                    Ok(Lease::new(item, sender))
                }
                State::Leased(mut receiver) => {
                    *state = Self::await_return(&mut receiver).await;
                    continue;
                }
            };
        }
    }
    /// Shared handling of item return
    async fn await_return(receiver: &mut Receiver<T>) -> State<T> {
        if let Ok(item) = receiver.await {
            State::Present(item)
        } else {
            // This could perhaps happen if the thread having the lease panicked badly
            // or after `mem::forget(lease)`
            debug!("Lease dropped without sending the item back. Subsequent call will panic unless you set a new potential.");
            State::Gone
        }
    }
}

/// The leased item. Item will be sent back to the owner on `drop()` unless stolen with `steal()`.
///
/// Lease does not allow empty state so as long as it exists, it must have the item.
///
/// As long as `Lease` exists, `Potential` will be waiting for return (unless reset). Drop `Lease` or steal it to release the wait.
#[derive(Debug)]
pub struct Lease<T> {
    /// The item wrapped in option only to enable `drop()` and `steal()`
    item: Option<T>,
    /// The item owner wrapped in option only to enable `drop()` and `steal()`
    owner: Option<Sender<T>>,
}

impl<T> Lease<T> {
    fn new(item: T, owner: Sender<T>) -> Self {
        Lease {
            item: Some(item),
            owner: Some(owner),
        }
    }
    /// Return the lease to owner, destroying the lease.
    /// If the owner doesn't listen anymore, the item is returned to caller.
    pub fn close(mut self) -> Option<T> {
        let owner = self.owner.take().expect("owner must be set");
        let item = self.item.take().expect("item must be set");
        // if there is nobody listening, we pass the item back
        let result = match owner.send(item) {
            Ok(()) => None,
            Err(item) => Some(item),
        };
        std::mem::forget(self);
        result
    }
    /// Replace the item within the lease
    pub fn replace(&mut self, replacement: T) -> T {
        std::mem::replace(&mut self.item, Some(replacement)).expect("item must be set")
    }
    /// Steal the leased item destroying the lease.
    /// `Potential` await calls will return `None`.
    pub fn steal(mut self) -> T {
        let item = self.item.take().expect("item must be set");
        let owner = self.owner.take().expect("owner must be set");
        drop(owner);
        std::mem::forget(self);
        item
    }
}
impl<T> Deref for Lease<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        self.item.as_ref().expect("item must be set")
    }
}
impl<T> DerefMut for Lease<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.item.as_mut().expect("item must be set")
    }
}
impl<T> Drop for Lease<T> {
    /// `drop()` must be called for the item to return to the owner.
    /// Otherwise, the owner will be stuck waiting forever.
    fn drop(&mut self) {
        if let Some(owner) = self.owner.take() {
            if let Some(item) = self.item.take() {
                // if there is nobody listening, that's OK
                drop(owner.send(item));
            }
        }
    }
}

/// Error result of a lease on an emtpy `Potential` which can be upgraded to a `Lease` by setting the item.
///
/// As long as `Gone` exists, `Potential` will be waiting for return (unless reset). Drop `Gone` to release the wait.
#[derive(Debug)]
pub struct Gone<T> {
    /// The item owner wrapped in option only to enable `drop()` and `steal()`
    owner: Sender<T>,
}
impl<T> Gone<T> {
    fn new(owner: Sender<T>) -> Self {
        Gone { owner }
    }
    /// Set the item and upgrade to a `Lease`
    pub fn set(self, item: T) -> Lease<T> {
        Lease::new(item, self.owner)
    }
}
impl<T> fmt::Display for Gone<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("Potential item is gone")
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::future::Future;
    use std::task::{Context, Poll};

    fn is_sync<T: Sync>(_: T) {}
    fn is_send<T: Send>(_: T) {}
    fn is_static<T: 'static>(_: T) {}

    #[test]
    fn lease_is_sync() {
        let sut = Potential::new(true);
        is_sync(sut.lease());
    }
    #[test]
    fn lease_is_send() {
        let sut = Potential::new(true);
        is_send(sut.lease());
    }
    #[test]
    fn lease_on_rc_is_static() {
        let sut = Rc::new(Potential::new(true));
        is_static(sut.lease_on_rc());
    }
    #[test]
    fn lease_on_arc_is_static() {
        let sut = Arc::new(Potential::new(true));
        is_static(sut.lease_on_arc());
    }
    #[test]
    fn lease_on_arc_is_sync() {
        let sut = Arc::new(Potential::new(true));
        is_sync(sut.lease_on_arc());
    }
    #[test]
    fn lease_on_arc_is_send() {
        let sut = Arc::new(Potential::new(true));
        is_send(sut.lease_on_arc());
    }

    #[test]
    fn it_blocks() {
        let sut = Potential::new(true);
        let mut lease1_fut = Box::pin(sut.lease());
        let mut lease2_fut = Box::pin(sut.lease());
        // first lease successfully received
        let lease1 = ready_ok(lease1_fut.as_mut().poll(&mut cx()));
        // lease2 cannot proceed because the value is in lease1
        assert!(
            lease2_fut.as_mut().poll(&mut cx()).is_pending(),
            "Second lease is blocked by the first"
        );
        // after dropping lease1, lease2 will go ahead.
        drop(lease1);
        let lease2 = ready_ok(lease2_fut.as_mut().poll(&mut cx()));
        drop(lease2);
    }

    #[test]
    fn it_hangs_on_no_drop() {
        let sut = Potential::new(true);
        let mut lease1_fut = Box::pin(sut.lease());
        let mut lease2_fut = Box::pin(sut.lease());
        // first lease successfully received
        let lease1 = ready_ok(lease1_fut.as_mut().poll(&mut cx()));
        // lease2 cannot proceed because the value is in lease1
        assert!(
            lease2_fut.as_mut().poll(&mut cx()).is_pending(),
            "Second lease is blocked by the first"
        );
        // after forgetting lease1 (not calling a destructor), lease2 will be stuck forever.
        std::mem::forget(lease1);
        assert!(
            lease2_fut.as_mut().poll(&mut cx()).is_pending(),
            "Second lease is blocked by the first"
        );
    }
    #[test]
    fn it_handles_stealing() {
        let sut = Potential::new(true);
        let mut lease1_fut = Box::pin(sut.lease());
        let mut lease2_fut = Box::pin(sut.lease());
        // first lease successfully received
        let lease1 = ready_ok(lease1_fut.as_mut().poll(&mut cx()));
        // lease2 cannot proceed because the value is in lease1
        assert!(
            lease2_fut.as_mut().poll(&mut cx()).is_pending(),
            "Second lease is blocked by the first"
        );
        // after stealing lease1 (not calling a destructor), lease2 will return None.
        lease1.steal();
        ready_err(lease2_fut.as_mut().poll(&mut cx()));
    }

    fn ready_ok<T, E>(poll: Poll<Result<T, E>>) -> T {
        match poll {
            Poll::Ready(Ok(t)) => t,
            _ => panic!("poll is not ready or is err"),
        }
    }
    fn ready_err<T, E>(poll: Poll<Result<T, E>>) -> E {
        match poll {
            Poll::Ready(Err(e)) => e,
            _ => panic!("poll is not ready or is ok"),
        }
    }

    fn cx() -> Context<'static> {
        let waker = futures_util::task::noop_waker_ref();
        let cx = Context::from_waker(waker);
        cx
    }
}