1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use extbyteorder::ByteOrder;
use extbyteorder::ReadBytesExt as ExtReadBytesExt;
use extbyteorder::WriteBytesExt as ExtWriteBytesExt;

use std::marker::PhantomData;
use std::io::{Result, Read, Write};
use std::ops::{Deref, DerefMut};

use super::super::{ReadAt, WriteAt};
use super::{ReadBytesExt, WriteBytesExt};

/// Read or write with a given inherent byte-order.
///
/// If you know that you'll always be using a single endianness, an instance of `ByteIo` will
/// allow you to omit the endian specifier on every read or write.
///
/// # Examples
///
/// ```rust
/// # extern crate positioned_io;
/// # extern crate byteorder;
/// # use std::io;
/// # use byteorder::BigEndian;
/// use positioned_io::ByteIo;
///
/// # fn foo() -> io::Result<()> {
/// let mut buf = [0; 8];
/// {
///     let mut io : ByteIo<_, BigEndian> = ByteIo::new(buf.as_mut());
///     // All writes will automatically be BigEndian.
///     try!(io.write_u16(300));
///     try!(io.write_u32(1_000_000));
///     try!(io.write_i16(-1));
///  }
/// assert_eq!(buf, [1, 44, 0, 15, 66, 64, 255, 255]);
/// # Ok(())
/// # }
/// # fn main() { foo().unwrap() }
/// ```
pub struct ByteIo<I, E: ByteOrder> {
    io: I,
    endianness: PhantomData<E>,
}

impl<I, E> ByteIo<I, E>
    where E: ByteOrder
{
    /// Create a new `ByteIo` from some sort of reader or writer.
    ///
    /// You will need to specify the byte-order when creating a ByteIo.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # extern crate positioned_io;
    /// # extern crate byteorder;
    /// # use byteorder::BigEndian;
    /// use positioned_io::ByteIo;
    ///
    /// # fn main() {
    /// let buf = [0; 10];
    /// // Add a type specifier for the byte order.
    /// let io : ByteIo<_, BigEndian> = ByteIo::new(buf.as_ref());
    /// # }
    /// ```
    pub fn new(io: I) -> Self {
        ByteIo {
            io: io,
            endianness: PhantomData,
        }
    }
}

// Auto-coerce back to the base IO.
impl<I, E> Deref for ByteIo<I, E>
    where E: ByteOrder
{
    type Target = I;
    fn deref(&self) -> &I {
        &self.io
    }
}
impl<I, E> DerefMut for ByteIo<I, E>
    where E: ByteOrder
{
    fn deref_mut(&mut self) -> &mut I {
        &mut self.io
    }
}

impl<I, E: ByteOrder> ByteIo<I, E>
    where I: Read
{
    /// Reads an unsigned 16-bit integer.
    pub fn read_u16(&mut self) -> Result<u16> {
        self.io.read_u16::<E>()
    }
    /// Reads a signed 16-bit integer.
    pub fn read_i16(&mut self) -> Result<i16> {
        self.io.read_i16::<E>()
    }
    /// Reads an unsigned 32-bit integer.
    pub fn read_u32(&mut self) -> Result<u32> {
        self.io.read_u32::<E>()
    }
    /// Reads a signed 32-bit integer.
    pub fn read_i32(&mut self) -> Result<i32> {
        self.io.read_i32::<E>()
    }
    /// Reads an unsigned 64-bit integer.
    pub fn read_u64(&mut self) -> Result<u64> {
        self.io.read_u64::<E>()
    }
    /// Reads a signed 64-bit integer.
    pub fn read_i64(&mut self) -> Result<i64> {
        self.io.read_i64::<E>()
    }
    /// Reads an unsigned `nbytes`-bit integer.
    pub fn read_uint(&mut self, nbytes: usize) -> Result<u64> {
        self.io.read_uint::<E>(nbytes)
    }
    /// Reads a signed `nbytes`-bit integer.
    pub fn read_int(&mut self, nbytes: usize) -> Result<i64> {
        self.io.read_int::<E>(nbytes)
    }
    /// Reads a single-precision floating point number.
    pub fn read_f32(&mut self) -> Result<f32> {
        self.io.read_f32::<E>()
    }
    /// Reads a double-precision floating point number.
    pub fn read_f64(&mut self) -> Result<f64> {
        self.io.read_f64::<E>()
    }
}
impl<I, E: ByteOrder> ByteIo<I, E>
    where I: Write
{
    /// Writes an unsigned 16-bit integer.
    pub fn write_u16(&mut self, n: u16) -> Result<()> {
        self.io.write_u16::<E>(n)
    }
    /// Writes a signed 16-bit integer.
    pub fn write_i16(&mut self, n: i16) -> Result<()> {
        self.io.write_i16::<E>(n)
    }
    /// Writes an unsigned 32-bit integer.
    pub fn write_u32(&mut self, n: u32) -> Result<()> {
        self.io.write_u32::<E>(n)
    }
    /// Writes a signed 32-bit integer.
    pub fn write_i32(&mut self, n: i32) -> Result<()> {
        self.io.write_i32::<E>(n)
    }
    /// Writes an unsigned 64-bit integer.
    pub fn write_u64(&mut self, n: u64) -> Result<()> {
        self.io.write_u64::<E>(n)
    }
    /// Writes a signed 64-bit integer.
    pub fn write_i64(&mut self, n: i64) -> Result<()> {
        self.io.write_i64::<E>(n)
    }
    /// Writes an unsigned `nbytes`-bit integer.
    pub fn write_uint(&mut self, n: u64, nbytes: usize) -> Result<()> {
        self.io.write_uint::<E>(n, nbytes)
    }
    /// Writes a signed `nbytes`-bit integer.
    pub fn write_int(&mut self, n: i64, nbytes: usize) -> Result<()> {
        self.io.write_int::<E>(n, nbytes)
    }
    /// Writes a single-precision floating point number.
    pub fn write_f32(&mut self, n: f32) -> Result<()> {
        self.io.write_f32::<E>(n)
    }
    /// Writes a double-precision floating point number.
    pub fn write_f64(&mut self, n: f64) -> Result<()> {
        self.io.write_f64::<E>(n)
    }
}
impl<I, E: ByteOrder> ByteIo<I, E>
    where I: ReadAt
{
    /// Reads an unsigned 16-bit integer at an offset.
    pub fn read_u16_at(&self, pos: u64) -> Result<u16> {
        self.io.read_u16_at::<E>(pos)
    }
    /// Reads a signed 16-bit integer at an offset.
    pub fn read_i16_at(&self, pos: u64) -> Result<i16> {
        self.io.read_i16_at::<E>(pos)
    }
    /// Reads an unsigned 32-bit integer at an offset.
    pub fn read_u32_at(&self, pos: u64) -> Result<u32> {
        self.io.read_u32_at::<E>(pos)
    }
    /// Reads a signed 32-bit integer at an offset.
    pub fn read_i32_at(&self, pos: u64) -> Result<i32> {
        self.io.read_i32_at::<E>(pos)
    }
    /// Reads an unsigned 64-bit integer at an offset.
    pub fn read_u64_at(&self, pos: u64) -> Result<u64> {
        self.io.read_u64_at::<E>(pos)
    }
    /// Reads a signed 64-bit integer at an offset.
    pub fn read_i64_at(&self, pos: u64) -> Result<i64> {
        self.io.read_i64_at::<E>(pos)
    }
    /// Reads an unsigned `nbytes`-bit integer at an offset.
    pub fn read_uint_at(&self, pos: u64, nbytes: usize) -> Result<u64> {
        self.io.read_uint_at::<E>(pos, nbytes)
    }
    /// Reads a signed `nbytes`-bit integer at an offset.
    pub fn read_int_at(&self, pos: u64, nbytes: usize) -> Result<i64> {
        self.io.read_int_at::<E>(pos, nbytes)
    }
    /// Reads a single-precision floating point number at an offset.
    pub fn read_f32_at(&self, pos: u64) -> Result<f32> {
        self.io.read_f32_at::<E>(pos)
    }
    /// Reads a double-precision floating point number at an offset.
    pub fn read_f64_at(&self, pos: u64) -> Result<f64> {
        self.io.read_f64_at::<E>(pos)
    }
}
impl<I, E: ByteOrder> ByteIo<I, E>
    where I: WriteAt
{
    /// Writes an unsigned 16-bit integer to an offset.
    pub fn write_u16_at(&mut self, pos: u64, n: u16) -> Result<()> {
        self.io.write_u16_at::<E>(pos, n)
    }
    /// Writes a signed 16-bit integer to an offset.
    pub fn write_i16_at(&mut self, pos: u64, n: i16) -> Result<()> {
        self.io.write_i16_at::<E>(pos, n)
    }
    /// Writes an unsigned 32-bit integer to an offset.
    pub fn write_u32_at(&mut self, pos: u64, n: u32) -> Result<()> {
        self.io.write_u32_at::<E>(pos, n)
    }
    /// Writes a signed 32-bit integer to an offset.
    pub fn write_i32_at(&mut self, pos: u64, n: i32) -> Result<()> {
        self.io.write_i32_at::<E>(pos, n)
    }
    /// Writes an unsigned 64-bit integer to an offset.
    pub fn write_u64_at(&mut self, pos: u64, n: u64) -> Result<()> {
        self.io.write_u64_at::<E>(pos, n)
    }
    /// Writes a signed 64-bit integer to an offset.
    pub fn write_i64_at(&mut self, pos: u64, n: i64) -> Result<()> {
        self.io.write_i64_at::<E>(pos, n)
    }
    /// Writes an unsigned `nbytes`-bit integer to an offset.
    pub fn write_uint_at(&mut self, pos: u64, n: u64, nbytes: usize) -> Result<()> {
        self.io.write_uint_at::<E>(pos, n, nbytes)
    }
    /// Writes a signed `nbytes`-bit integer to an offset.
    pub fn write_int_at(&mut self, pos: u64, n: i64, nbytes: usize) -> Result<()> {
        self.io.write_int_at::<E>(pos, n, nbytes)
    }
    /// Writes a single-precision floating point number to an offset.
    pub fn write_f32_at(&mut self, pos: u64, n: f32) -> Result<()> {
        self.io.write_f32_at::<E>(pos, n)
    }
    /// Writes a double-precision floating point number to an offset.
    pub fn write_f64_at(&mut self, pos: u64, n: f64) -> Result<()> {
        self.io.write_f64_at::<E>(pos, n)
    }
}