portable_io/lib.rs
1//! Traits, helpers, and type definitions for core I/O functionality.
2//! A subset from Rust `std::io` functionality supported for `no-std`.
3//!
4//! **MSRV:**
5//! - stable: `1.81.0`
6//! - nightly: `nightly-2022-08-24`
7//!
8//! NOTE: unstable configuration `--cfg portable_io_unstable_all` in Rust flags is required for Rust nightly
9//! pre-`2024-06-09` to enable `error_in_core` feature directive (stabilized in June 2024).
10//!
11//! ## Features
12//!
13//! - `alloc` (enabled by default) - mandatory feature - for alloc-related functionality
14//! - `os-error` (unstable feature) - support raw OS errors - with some KNOWN PANICS due to MISSING FUNCTIONALITY
15//! - `unix-iovec` (unstable feature) - use `iovec` from `libc` for data stored in IoSlice & IoSliceMut
16//!
17//! ## CFG options
18//!
19//! - `portable_io_unstable_all` - enable all unstable option(s):
20//! - size hint optimization for Read iterator - uses Rust unstable `min_specialization` feature
21//!
22//! To enable: use `--cfg portable_io_unstable_all` in Rust flags, set `RUSTFLAGS` env variable
23//! when running `cargo build` or `cargo test` for example.
24//!
25//! <!-- DOC TODO: INCLUDE & ADAPT MORE DOC COMMENTS FROM RUST STD IO LIBRARY CODE -->
26//! <!-- DOC TODO: CLEANUP AS MANY CARGO DOC WARNINGS AS POSSIBLE & CHECK THIS IN CI -->
27
28#![no_std]
29// ---
30// NEEDED to allow `error_in_core` & `mixed_integer_ops` feature directives, which were stabilized in June & September 2024
31#![allow(stable_features)]
32// ---
33// TODO: FIX documentation of notable traits as noted by TODO comments below - requires Rust unstable doc_notable_trait feature
34// ---
35#![cfg_attr(
36 portable_io_unstable_all,
37 feature(allocator_api, min_specialization, error_in_core, mixed_integer_ops)
38)]
39
40#[cfg(test)]
41mod tests;
42
43use core::cmp;
44#[cfg(portable_io_unstable_all)] // for unstable feature: size hint optimization
45use core::convert::TryInto;
46use core::fmt;
47use core::mem::replace;
48use core::ops::{Deref, DerefMut};
49use core::slice;
50use core::str;
51
52extern crate alloc;
53#[cfg(portable_io_unstable_all)] // for unstable feature: size hint optimization
54use alloc::boxed::Box;
55use alloc::string::String;
56use alloc::vec::Vec;
57
58// TODO: port & export more items from Rust std::io
59pub use self::cursor::Cursor;
60pub use self::error::{Error, ErrorKind, Result};
61pub use self::readbuf::ReadBuf;
62
63mod cursor;
64mod error;
65mod impls;
66pub mod prelude;
67mod readbuf;
68
69mod sys;
70
71// TODO: support limited features with no use of `alloc` crate
72#[cfg(not(any(doc, feature = "alloc")))]
73compile_error!("`alloc` feature is currently required for this library to build");
74
75#[cfg(all(feature = "unix-iovec", not(unix)))]
76compile_error!("`unix-iovec` feature requires a Unix platform");
77
78struct Guard<'a> {
79 buf: &'a mut Vec<u8>,
80 len: usize,
81}
82
83impl Drop for Guard<'_> {
84 fn drop(&mut self) {
85 unsafe {
86 self.buf.set_len(self.len);
87 }
88 }
89}
90
91// Several `read_to_string` and `read_line` methods in the standard library will
92// append data into a `String` buffer, but we need to be pretty careful when
93// doing this. The implementation will just call `.as_mut_vec()` and then
94// delegate to a byte-oriented reading method, but we must ensure that when
95// returning we never leave `buf` in a state such that it contains invalid UTF-8
96// in its bounds.
97//
98// To this end, we use an RAII guard (to protect against panics) which updates
99// the length of the string when it is dropped. This guard initially truncates
100// the string to the prior length and only after we've validated that the
101// new contents are valid UTF-8 do we allow it to set a longer length.
102//
103// The unsafety in this function is twofold:
104//
105// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
106// checks.
107// 2. We're passing a raw buffer to the function `f`, and it is expected that
108// the function only *appends* bytes to the buffer. We'll get undefined
109// behavior if existing bytes are overwritten to have non-UTF-8 data.
110pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
111where
112 F: FnOnce(&mut Vec<u8>) -> Result<usize>,
113{
114 let mut g = Guard { len: buf.len(), buf: buf.as_mut_vec() };
115 let ret = f(g.buf);
116 if str::from_utf8(&g.buf[g.len..]).is_err() {
117 ret.and_then(|_| {
118 Err(Error::new_const(ErrorKind::InvalidData, &"stream did not contain valid UTF-8"))
119 })
120 } else {
121 g.len = g.buf.len();
122 ret
123 }
124}
125
126// This uses an adaptive system to extend the vector when it fills. We want to
127// avoid paying to allocate and zero a huge chunk of memory if the reader only
128// has 4 bytes while still making large reads if the reader does have a ton
129// of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
130// time is 4,500 times (!) slower than a default reservation size of 32 if the
131// reader has a very small amount of data to return.
132pub(crate) fn default_read_to_end<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
133 let start_len = buf.len();
134 let start_cap = buf.capacity();
135
136 let mut initialized = 0; // Extra initialized bytes from previous loop iteration
137 loop {
138 if buf.len() == buf.capacity() {
139 buf.reserve(32); // buf is full, need more space
140 }
141
142 let mut read_buf = ReadBuf::uninit(buf.spare_capacity_mut());
143
144 // SAFETY: These bytes were initialized but not filled in the previous loop
145 unsafe {
146 read_buf.assume_init(initialized);
147 }
148
149 match r.read_buf(&mut read_buf) {
150 Ok(()) => {}
151 Err(e) if e.kind() == ErrorKind::Interrupted => continue,
152 Err(e) => return Err(e),
153 }
154
155 if read_buf.filled_len() == 0 {
156 return Ok(buf.len() - start_len);
157 }
158
159 // store how much was initialized but not filled
160 initialized = read_buf.initialized_len() - read_buf.filled_len();
161 let new_len = read_buf.filled_len() + buf.len();
162
163 // SAFETY: ReadBuf's invariants mean this much memory is init
164 unsafe {
165 buf.set_len(new_len);
166 }
167
168 if buf.len() == buf.capacity() && buf.capacity() == start_cap {
169 // The buffer might be an exact fit. Let's read into a probe buffer
170 // and see if it returns `Ok(0)`. If so, we've avoided an
171 // unnecessary doubling of the capacity. But if not, append the
172 // probe buffer to the primary buffer and let its capacity grow.
173 let mut probe = [0u8; 32];
174
175 loop {
176 match r.read(&mut probe) {
177 Ok(0) => return Ok(buf.len() - start_len),
178 Ok(n) => {
179 buf.extend_from_slice(&probe[..n]);
180 break;
181 }
182 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
183 Err(e) => return Err(e),
184 }
185 }
186 }
187 }
188}
189
190pub(crate) fn default_read_to_string<R: Read + ?Sized>(
191 r: &mut R,
192 buf: &mut String,
193) -> Result<usize> {
194 // Note that we do *not* call `r.read_to_end()` here. We are passing
195 // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
196 // method to fill it up. An arbitrary implementation could overwrite the
197 // entire contents of the vector, not just append to it (which is what
198 // we are expecting).
199 //
200 // To prevent extraneously checking the UTF-8-ness of the entire buffer
201 // we pass it to our hardcoded `default_read_to_end` implementation which
202 // we know is guaranteed to only read data into the end of the buffer.
203 unsafe { append_to_string(buf, |b| default_read_to_end(r, b)) }
204}
205
206pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
207where
208 F: FnOnce(&mut [u8]) -> Result<usize>,
209{
210 let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
211 read(buf)
212}
213
214pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
215where
216 F: FnOnce(&[u8]) -> Result<usize>,
217{
218 let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
219 write(buf)
220}
221
222pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
223 while !buf.is_empty() {
224 match this.read(buf) {
225 Ok(0) => break,
226 Ok(n) => {
227 let tmp = buf;
228 buf = &mut tmp[n..];
229 }
230 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
231 Err(e) => return Err(e),
232 }
233 }
234 if !buf.is_empty() {
235 Err(Error::new_const(ErrorKind::UnexpectedEof, &"failed to fill whole buffer"))
236 } else {
237 Ok(())
238 }
239}
240
241pub(crate) fn default_read_buf<F>(read: F, buf: &mut ReadBuf<'_>) -> Result<()>
242where
243 F: FnOnce(&mut [u8]) -> Result<usize>,
244{
245 let n = read(buf.initialize_unfilled())?;
246 buf.add_filled(n);
247 Ok(())
248}
249
250/// The `Read` trait allows for reading bytes from a source.
251///
252/// Implementors of the `Read` trait are called 'readers'.
253///
254/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
255/// will attempt to pull bytes from this source into a provided buffer. A
256/// number of other methods are implemented in terms of [`read()`], giving
257/// implementors a number of ways to read bytes while only needing to implement
258/// a single method.
259///
260/// Readers are intended to be composable with one another. Many implementors
261/// throughout [`std::io`] take and provide types which implement the `Read`
262/// trait.
263///
264/// Please note that each call to [`read()`] may involve a system call, and
265/// therefore, using something that implements [`BufRead`], such as
266/// [`BufReader`], will be more efficient.
267///
268/// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
269/// # Example code
270///
271/// Read from [`&str`] - possible because [`&[u8]`][prim@slice] is enhanced with impl of `Read`:
272///
273/// ```no_run
274/// use portable_io::{self as io, Read};
275///
276/// fn main() -> io::Result<()> {
277/// let mut b = "This string will be read".as_bytes();
278/// let mut buffer = [0; 10];
279///
280/// // read up to 10 bytes
281/// b.read(&mut buffer)?;
282///
283/// // etc... it works exactly as a File does!
284/// Ok(())
285/// }
286/// ```
287///
288/// [`&str`]: prim@str
289// TODO: add cfg_attr to document as notable trait
290pub trait Read {
291 /// Pull some bytes from this source into the specified buffer, returning
292 /// how many bytes were read.
293 ///
294 /// This function does not provide any guarantees about whether it blocks
295 /// waiting for data, but if an object needs to block for a read and cannot,
296 /// it will typically signal this via an [`Err`] return value.
297 ///
298 /// If the return value of this method is [`Ok(n)`], then implementations must
299 /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
300 /// that the buffer `buf` has been filled in with `n` bytes of data from this
301 /// source. If `n` is `0`, then it can indicate one of two scenarios:
302 ///
303 /// 1. This reader has reached its "end of file" and will likely no longer
304 /// be able to produce bytes. Note that this does not mean that the
305 /// reader will *always* no longer be able to produce bytes. As an example,
306 /// on Linux, this method will call the `recv` syscall for a [`TcpStream`],
307 /// where returning zero indicates the connection was shut down correctly. While
308 /// for [`File`], it is possible to reach the end of file and get zero as result,
309 /// but if more data is appended to the file, future calls to `read` will return
310 /// more data.
311 /// 2. The buffer specified was 0 bytes in length.
312 ///
313 /// It is not an error if the returned value `n` is smaller than the buffer size,
314 /// even when the reader is not at the end of the stream yet.
315 /// This may happen for example because fewer bytes are actually available right now
316 /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
317 ///
318 /// As this trait is safe to implement, callers cannot rely on `n <= buf.len()` for safety.
319 /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
320 /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
321 /// `n > buf.len()`.
322 ///
323 /// No guarantees are provided about the contents of `buf` when this
324 /// function is called, implementations cannot rely on any property of the
325 /// contents of `buf` being true. It is recommended that *implementations*
326 /// only write data to `buf` instead of reading its contents.
327 ///
328 /// Correspondingly, however, *callers* of this method must not assume any guarantees
329 /// about how the implementation uses `buf`. The trait is safe to implement,
330 /// so it is possible that the code that's supposed to write to the buffer might also read
331 /// from it. It is your responsibility to make sure that `buf` is initialized
332 /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
333 /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
334 ///
335 /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
336 ///
337 /// # Errors
338 ///
339 /// If this function encounters any form of I/O or other error, an error
340 /// variant will be returned. If an error is returned then it must be
341 /// guaranteed that no bytes were read.
342 ///
343 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
344 /// operation should be retried if there is nothing else to do.
345 ///
346 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
347 fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
348
349 /// Like `read`, except that it reads into a slice of buffers.
350 ///
351 /// Data is copied to fill each buffer in order, with the final buffer
352 /// written to possibly being only partially filled. This method must
353 /// behave equivalently to a single call to `read` with concatenated
354 /// buffers.
355 ///
356 /// The default implementation calls `read` with either the first nonempty
357 /// buffer provided, or an empty one if none exists.
358 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
359 default_read_vectored(|b| self.read(b), bufs)
360 }
361
362 /// Determines if this `Read`er has an efficient `read_vectored`
363 /// implementation.
364 ///
365 /// If a `Read`er does not override the default `read_vectored`
366 /// implementation, code using it may want to avoid the method all together
367 /// and coalesce writes into a single buffer for higher performance.
368 ///
369 /// The default implementation returns `false`.
370 fn is_read_vectored(&self) -> bool {
371 false
372 }
373
374 /// Read all bytes until EOF in this source, placing them into `buf`.
375 ///
376 /// All bytes read from this source will be appended to the specified buffer
377 /// `buf`. This function will continuously call [`read()`] to append more data to
378 /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
379 /// non-[`ErrorKind::Interrupted`] kind.
380 ///
381 /// If successful, this function will return the total number of bytes read.
382 ///
383 /// # Errors
384 ///
385 /// If this function encounters an error of the kind
386 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
387 /// will continue.
388 ///
389 /// If any other read error is encountered then this function immediately
390 /// returns. Any bytes which have already been read will be appended to
391 /// `buf`.
392 ///
393 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
394 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
395 default_read_to_end(self, buf)
396 }
397
398 /// Read all bytes until EOF in this source, appending them to `buf`.
399 ///
400 /// If successful, this function returns the number of bytes which were read
401 /// and appended to `buf`.
402 ///
403 /// # Errors
404 ///
405 /// If the data in this stream is *not* valid UTF-8 then an error is
406 /// returned and `buf` is unchanged.
407 ///
408 /// See [`read_to_end`] for other error semantics.
409 ///
410 /// [`read_to_end`]: Read::read_to_end
411 ///
412 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
413 fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
414 default_read_to_string(self, buf)
415 }
416
417 /// Read the exact number of bytes required to fill `buf`.
418 ///
419 /// This function reads as many bytes as necessary to completely fill the
420 /// specified buffer `buf`.
421 ///
422 /// No guarantees are provided about the contents of `buf` when this
423 /// function is called, implementations cannot rely on any property of the
424 /// contents of `buf` being true. It is recommended that implementations
425 /// only write data to `buf` instead of reading its contents. The
426 /// documentation on [`read`] has a more detailed explanation on this
427 /// subject.
428 ///
429 /// # Errors
430 ///
431 /// If this function encounters an error of the kind
432 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
433 /// will continue.
434 ///
435 /// If this function encounters an "end of file" before completely filling
436 /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
437 /// The contents of `buf` are unspecified in this case.
438 ///
439 /// If any other read error is encountered then this function immediately
440 /// returns. The contents of `buf` are unspecified in this case.
441 ///
442 /// If this function returns an error, it is unspecified how many bytes it
443 /// has read, but it will never read more than would be necessary to
444 /// completely fill the buffer.
445 ///
446 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
447 fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
448 default_read_exact(self, buf)
449 }
450
451 /// Pull some bytes from this source into the specified buffer.
452 ///
453 /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`ReadBuf`] rather than `[u8]` to allow use
454 /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
455 ///
456 /// The default implementation delegates to `read`.
457 fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
458 default_read_buf(|b| self.read(b), buf)
459 }
460
461 /// Read the exact number of bytes required to fill `buf`.
462 ///
463 /// This is equivalent to the [`read_exact`](Read::read_exact) method, except that it is passed a [`ReadBuf`] rather than `[u8]` to
464 /// allow use with uninitialized buffers.
465 fn read_buf_exact(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
466 while buf.remaining() > 0 {
467 let prev_filled = buf.filled().len();
468 match self.read_buf(buf) {
469 Ok(()) => {}
470 Err(e) if e.kind() == ErrorKind::Interrupted => continue,
471 Err(e) => return Err(e),
472 }
473
474 if buf.filled().len() == prev_filled {
475 return Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill buffer"));
476 }
477 }
478
479 Ok(())
480 }
481
482 /// Creates a "by reference" adaptor for this instance of `Read`.
483 ///
484 /// The returned adapter also implements `Read` and will simply borrow this
485 /// current reader.
486 ///
487 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
488 fn by_ref(&mut self) -> &mut Self
489 where
490 Self: Sized,
491 {
492 self
493 }
494
495 /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
496 ///
497 /// The returned type implements [`Iterator`] where the [`Item`] is
498 /// <code>[Result]<[u8], [io::Error]></code>.
499 /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
500 /// otherwise. EOF is mapped to returning [`None`] from this iterator.
501 ///
502 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
503 fn bytes(self) -> Bytes<Self>
504 where
505 Self: Sized,
506 {
507 Bytes { inner: self }
508 }
509
510 /// Creates an adapter which will chain this stream with another.
511 ///
512 /// The returned `Read` instance will first read all bytes from this object
513 /// until EOF is encountered. Afterwards the output is equivalent to the
514 /// output of `next`.
515 ///
516 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
517 fn chain<R: Read>(self, next: R) -> Chain<Self, R>
518 where
519 Self: Sized,
520 {
521 Chain { first: self, second: next, done_first: false }
522 }
523
524 /// Creates an adapter which will read at most `limit` bytes from it.
525 ///
526 /// This function returns a new instance of `Read` which will read at most
527 /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
528 /// read errors will not count towards the number of bytes read and future
529 /// calls to [`read()`] may succeed.
530 ///
531 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
532 fn take(self, limit: u64) -> Take<Self>
533 where
534 Self: Sized,
535 {
536 Take { inner: self, limit }
537 }
538}
539
540/// Read all bytes from a [reader][Read] into a new [`String`].
541///
542/// This is a convenience function for [`Read::read_to_string`]. Using this
543/// function avoids having to create a variable first and provides more type
544/// safety since you can only get the buffer out if there were no errors. (If you
545/// use [`Read::read_to_string`] you have to remember to check whether the read
546/// succeeded because otherwise your buffer will be empty or only partially full.)
547///
548/// # Performance
549///
550/// The downside of this function's increased ease of use and type safety is
551/// that it gives you less control over performance. For example, you can't
552/// pre-allocate memory like you can using [`String::with_capacity`] and
553/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
554/// occurs while reading.
555///
556/// In many cases, this function's performance will be adequate and the ease of use
557/// and type safety tradeoffs will be worth it. However, there are cases where you
558/// need more control over performance, and in those cases you should definitely use
559/// [`Read::read_to_string`] directly.
560///
561/// Note that in some special cases, such as when reading files, this function will
562/// pre-allocate memory based on the size of the input it is reading. In those
563/// cases, the performance should be as good as if you had used
564/// [`Read::read_to_string`] with a manually pre-allocated buffer.
565///
566/// # Errors
567///
568/// This function forces you to handle errors because the output (the `String`)
569/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
570/// that can occur. If any error occurs, you will get an [`Err`], so you
571/// don't have to worry about your buffer being empty or partially full.
572///
573/// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE STDIN -->
574pub fn read_to_string<R: Read>(reader: &mut R) -> Result<String> {
575 let mut buf = String::new();
576 reader.read_to_string(&mut buf)?;
577 Ok(buf)
578}
579
580/// A buffer type used with `Read::read_vectored`.
581///
582/// It is semantically a wrapper around an `&mut [u8]`, but is guaranteed to be
583/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
584/// Windows.
585#[repr(transparent)]
586pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
587
588unsafe impl<'a> Send for IoSliceMut<'a> {}
589
590unsafe impl<'a> Sync for IoSliceMut<'a> {}
591
592impl<'a> fmt::Debug for IoSliceMut<'a> {
593 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
594 fmt::Debug::fmt(self.0.as_slice(), fmt)
595 }
596}
597
598impl<'a> IoSliceMut<'a> {
599 /// Creates a new `IoSliceMut` wrapping a byte slice.
600 ///
601 /// # Panics
602 ///
603 /// Panics on Windows if the slice is larger than 4GB.
604 #[inline]
605 pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
606 IoSliceMut(sys::io::IoSliceMut::new(buf))
607 }
608
609 /// Advance the internal cursor of the slice.
610 ///
611 /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
612 /// multiple buffers.
613 ///
614 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
615 /// # Example code
616 ///
617 /// ```
618 /// use core::ops::Deref;
619 /// use portable_io::IoSliceMut;
620 ///
621 /// let mut data = [1; 8];
622 /// let mut buf = IoSliceMut::new(&mut data);
623 ///
624 /// // Mark 3 bytes as read.
625 /// buf.advance(3);
626 /// assert_eq!(buf.deref(), [1; 5].as_ref());
627 /// ```
628 #[inline]
629 pub fn advance(&mut self, n: usize) {
630 self.0.advance(n)
631 }
632
633 /// Advance the internal cursor of the slices.
634 ///
635 /// # Notes
636 ///
637 /// Elements in the slice may be modified if the cursor is not advanced to
638 /// the end of the slice. For example if we have a slice of buffers with 2
639 /// `IoSliceMut`s, both of length 8, and we advance the cursor by 10 bytes
640 /// the first `IoSliceMut` will be untouched however the second will be
641 /// modified to remove the first 2 bytes (10 - 8).
642 ///
643 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
644 /// # Example code
645 ///
646 /// ```
647 /// use core::ops::Deref;
648 /// use portable_io::IoSliceMut;
649 ///
650 /// let mut buf1 = [1; 8];
651 /// let mut buf2 = [2; 16];
652 /// let mut buf3 = [3; 8];
653 /// let mut bufs = &mut [
654 /// IoSliceMut::new(&mut buf1),
655 /// IoSliceMut::new(&mut buf2),
656 /// IoSliceMut::new(&mut buf3),
657 /// ][..];
658 ///
659 /// // Mark 10 bytes as read.
660 /// IoSliceMut::advance_slices(&mut bufs, 10);
661 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
662 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
663 /// ```
664 #[inline]
665 pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
666 // Number of buffers to remove.
667 let mut remove = 0;
668 // Total length of all the to be removed buffers.
669 let mut accumulated_len = 0;
670 for buf in bufs.iter() {
671 if accumulated_len + buf.len() > n {
672 break;
673 } else {
674 accumulated_len += buf.len();
675 remove += 1;
676 }
677 }
678
679 *bufs = &mut replace(bufs, &mut [])[remove..];
680 if !bufs.is_empty() {
681 bufs[0].advance(n - accumulated_len)
682 }
683 }
684}
685
686impl<'a> Deref for IoSliceMut<'a> {
687 type Target = [u8];
688
689 #[inline]
690 fn deref(&self) -> &[u8] {
691 self.0.as_slice()
692 }
693}
694
695impl<'a> DerefMut for IoSliceMut<'a> {
696 #[inline]
697 fn deref_mut(&mut self) -> &mut [u8] {
698 self.0.as_mut_slice()
699 }
700}
701
702/// A buffer type used with `Write::write_vectored`.
703///
704/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
705/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
706/// Windows.
707#[derive(Copy, Clone)]
708#[repr(transparent)]
709pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
710
711unsafe impl<'a> Send for IoSlice<'a> {}
712
713unsafe impl<'a> Sync for IoSlice<'a> {}
714
715impl<'a> fmt::Debug for IoSlice<'a> {
716 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
717 fmt::Debug::fmt(self.0.as_slice(), fmt)
718 }
719}
720
721impl<'a> IoSlice<'a> {
722 /// Creates a new `IoSlice` wrapping a byte slice.
723 ///
724 /// # Panics
725 ///
726 /// Panics on Windows if the slice is larger than 4GB.
727 #[must_use]
728 #[inline]
729 pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
730 IoSlice(sys::io::IoSlice::new(buf))
731 }
732
733 /// Advance the internal cursor of the slice.
734 ///
735 /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
736 /// buffers.
737 ///
738 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
739 /// # Example code
740 ///
741 /// ```
742 /// use core::ops::Deref;
743 /// use portable_io::IoSlice;
744 ///
745 /// let mut data = [1; 8];
746 /// let mut buf = IoSlice::new(&mut data);
747 ///
748 /// // Mark 3 bytes as read.
749 /// buf.advance(3);
750 /// assert_eq!(buf.deref(), [1; 5].as_ref());
751 /// ```
752 #[inline]
753 pub fn advance(&mut self, n: usize) {
754 self.0.advance(n)
755 }
756
757 /// Advance the internal cursor of the slices.
758 ///
759 /// # Notes
760 ///
761 /// Elements in the slice may be modified if the cursor is not advanced to
762 /// the end of the slice. For example if we have a slice of buffers with 2
763 /// `IoSlice`s, both of length 8, and we advance the cursor by 10 bytes the
764 /// first `IoSlice` will be untouched however the second will be modified to
765 /// remove the first 2 bytes (10 - 8).
766 ///
767 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
768 /// # Example code
769 ///
770 /// ```
771 /// use core::ops::Deref;
772 /// use portable_io::IoSlice;
773 ///
774 /// let buf1 = [1; 8];
775 /// let buf2 = [2; 16];
776 /// let buf3 = [3; 8];
777 /// let mut bufs = &mut [
778 /// IoSlice::new(&buf1),
779 /// IoSlice::new(&buf2),
780 /// IoSlice::new(&buf3),
781 /// ][..];
782 ///
783 /// // Mark 10 bytes as written.
784 /// IoSlice::advance_slices(&mut bufs, 10);
785 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
786 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
787 #[inline]
788 pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
789 // Number of buffers to remove.
790 let mut remove = 0;
791 // Total length of all the to be removed buffers.
792 let mut accumulated_len = 0;
793 for buf in bufs.iter() {
794 if accumulated_len + buf.len() > n {
795 break;
796 } else {
797 accumulated_len += buf.len();
798 remove += 1;
799 }
800 }
801
802 *bufs = &mut replace(bufs, &mut [])[remove..];
803 if !bufs.is_empty() {
804 bufs[0].advance(n - accumulated_len)
805 }
806 }
807}
808
809impl<'a> Deref for IoSlice<'a> {
810 type Target = [u8];
811
812 #[inline]
813 fn deref(&self) -> &[u8] {
814 self.0.as_slice()
815 }
816}
817
818/// A trait for objects which are byte-oriented sinks.
819///
820/// Implementors of the `Write` trait are sometimes called 'writers'.
821///
822/// Writers are defined by two required methods, [`write`] and [`flush`]:
823///
824/// * The [`write`] method will attempt to write some data into the object,
825/// returning how many bytes were successfully written.
826///
827/// * The [`flush`] method is useful for adapters and explicit buffers
828/// themselves for ensuring that all buffered data has been pushed out to the
829/// 'true sink'.
830///
831/// Writers are intended to be composable with one another. Many implementors
832/// throughout [`std::io`] take and provide types which implement the `Write`
833/// trait.
834///
835/// [`write`]: Write::write
836/// [`flush`]: Write::flush
837/// [`std::io`]: self
838///
839/// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
840///
841/// The trait also provides convenience methods like [`write_all`], which calls
842/// `write` in a loop until its entire input has been written.
843///
844/// [`write_all`]: Write::write_all
845// TODO: add cfg_attr to document as notable trait
846pub trait Write {
847 /// Write a buffer into this writer, returning how many bytes were written.
848 ///
849 /// This function will attempt to write the entire contents of `buf`, but
850 /// the entire write might not succeed, or the write may also generate an
851 /// error. A call to `write` represents *at most one* attempt to write to
852 /// any wrapped object.
853 ///
854 /// Calls to `write` are not guaranteed to block waiting for data to be
855 /// written, and a write which would otherwise block can be indicated through
856 /// an [`Err`] variant.
857 ///
858 /// If the return value is [`Ok(n)`] then it must be guaranteed that
859 /// `n <= buf.len()`. A return value of `0` typically means that the
860 /// underlying object is no longer able to accept bytes and will likely not
861 /// be able to in the future as well, or that the buffer provided is empty.
862 ///
863 /// # Errors
864 ///
865 /// Each call to `write` may generate an I/O error indicating that the
866 /// operation could not be completed. If an error is returned then no bytes
867 /// in the buffer were written to this writer.
868 ///
869 /// It is **not** considered an error if the entire buffer could not be
870 /// written to this writer.
871 ///
872 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
873 /// write operation should be retried if there is nothing else to do.
874 ///
875 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
876 ///
877 /// [`Ok(n)`]: Ok
878 fn write(&mut self, buf: &[u8]) -> Result<usize>;
879
880 /// Like [`write`], except that it writes from a slice of buffers.
881 ///
882 /// Data is copied from each buffer in order, with the final buffer
883 /// read from possibly being only partially consumed. This method must
884 /// behave as a call to [`write`] with the buffers concatenated would.
885 ///
886 /// The default implementation calls [`write`] with either the first nonempty
887 /// buffer provided, or an empty one if none exists.
888 ///
889 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
890 ///
891 /// [`write`]: Write::write
892 fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
893 default_write_vectored(|b| self.write(b), bufs)
894 }
895
896 /// Determines if this `Write`r has an efficient [`write_vectored`]
897 /// implementation.
898 ///
899 /// If a `Write`r does not override the default [`write_vectored`]
900 /// implementation, code using it may want to avoid the method all together
901 /// and coalesce writes into a single buffer for higher performance.
902 ///
903 /// The default implementation returns `false`.
904 ///
905 /// [`write_vectored`]: Write::write_vectored
906 fn is_write_vectored(&self) -> bool {
907 false
908 }
909
910 /// Flush this output stream, ensuring that all intermediately buffered
911 /// contents reach their destination.
912 ///
913 /// # Errors
914 ///
915 /// It is considered an error if not all bytes could be written due to
916 /// I/O errors or EOF being reached.
917 ///
918 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
919 fn flush(&mut self) -> Result<()>;
920
921 /// Attempts to write an entire buffer into this writer.
922 ///
923 /// This method will continuously call [`write`] until there is no more data
924 /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
925 /// returned. This method will not return until the entire buffer has been
926 /// successfully written or such an error occurs. The first error that is
927 /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
928 /// returned.
929 ///
930 /// If the buffer contains no data, this will never call [`write`].
931 ///
932 /// # Errors
933 ///
934 /// This function will return the first error of
935 /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
936 ///
937 /// [`write`]: Write::write
938 ///
939 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
940 fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
941 while !buf.is_empty() {
942 match self.write(buf) {
943 Ok(0) => {
944 return Err(Error::new_const(
945 ErrorKind::WriteZero,
946 &"failed to write whole buffer",
947 ));
948 }
949 Ok(n) => buf = &buf[n..],
950 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
951 Err(e) => return Err(e),
952 }
953 }
954 Ok(())
955 }
956
957 /// Attempts to write multiple buffers into this writer.
958 ///
959 /// This method will continuously call [`write_vectored`] until there is no
960 /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
961 /// kind is returned. This method will not return until all buffers have
962 /// been successfully written or such an error occurs. The first error that
963 /// is not of [`ErrorKind::Interrupted`] kind generated from this method
964 /// will be returned.
965 ///
966 /// If the buffer contains no data, this will never call [`write_vectored`].
967 ///
968 /// # Notes
969 ///
970 /// Unlike [`write_vectored`], this takes a *mutable* reference to
971 /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
972 /// modify the slice to keep track of the bytes already written.
973 ///
974 /// Once this function returns, the contents of `bufs` are unspecified, as
975 /// this depends on how many calls to [`write_vectored`] were necessary. It is
976 /// best to understand this function as taking ownership of `bufs` and to
977 /// not use `bufs` afterwards. The underlying buffers, to which the
978 /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
979 /// can be reused.
980 ///
981 /// [`write_vectored`]: Write::write_vectored
982 ///
983 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
984 /// # Example code
985 ///
986 /// ```
987 /// # fn main() -> portable_io::Result<()> {
988 ///
989 /// use portable_io::{Write, IoSlice};
990 ///
991 /// let mut writer = Vec::new();
992 /// let bufs = &mut [
993 /// IoSlice::new(&[1]),
994 /// IoSlice::new(&[2, 3]),
995 /// IoSlice::new(&[4, 5, 6]),
996 /// ];
997 ///
998 /// writer.write_all_vectored(bufs)?;
999 /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1000 ///
1001 /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1002 /// # Ok(()) }
1003 /// ```
1004 fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
1005 // Guarantee that bufs is empty if it contains no data,
1006 // to avoid calling write_vectored if there is no data to be written.
1007 IoSlice::advance_slices(&mut bufs, 0);
1008 while !bufs.is_empty() {
1009 match self.write_vectored(bufs) {
1010 Ok(0) => {
1011 return Err(Error::new_const(
1012 ErrorKind::WriteZero,
1013 &"failed to write whole buffer",
1014 ));
1015 }
1016 Ok(n) => IoSlice::advance_slices(&mut bufs, n),
1017 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
1018 Err(e) => return Err(e),
1019 }
1020 }
1021 Ok(())
1022 }
1023
1024 /// Writes a formatted string into this writer, returning any error
1025 /// encountered.
1026 ///
1027 /// This method is primarily used to interface with the
1028 /// [`format_args!()`] macro, and it is rare that this should
1029 /// explicitly be called. The [`write!()`] macro should be favored to
1030 /// invoke this method instead.
1031 ///
1032 /// This function internally uses the [`write_all`] method on
1033 /// this trait and hence will continuously write data so long as no errors
1034 /// are received. This also means that partial writes are not indicated in
1035 /// this signature.
1036 ///
1037 /// [`write_all`]: Write::write_all
1038 ///
1039 /// # Errors
1040 ///
1041 /// This function will return any I/O error reported while formatting.
1042 ///
1043 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1044 fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
1045 // Create a shim which translates a Write to a fmt::Write and saves
1046 // off I/O errors. instead of discarding them
1047 struct Adapter<'a, T: ?Sized + 'a> {
1048 inner: &'a mut T,
1049 error: Result<()>,
1050 }
1051
1052 impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
1053 fn write_str(&mut self, s: &str) -> fmt::Result {
1054 match self.inner.write_all(s.as_bytes()) {
1055 Ok(()) => Ok(()),
1056 Err(e) => {
1057 self.error = Err(e);
1058 Err(fmt::Error)
1059 }
1060 }
1061 }
1062 }
1063
1064 let mut output = Adapter { inner: self, error: Ok(()) };
1065 match fmt::write(&mut output, fmt) {
1066 Ok(()) => Ok(()),
1067 Err(..) => {
1068 // check if the error came from the underlying `Write` or not
1069 if output.error.is_err() {
1070 output.error
1071 } else {
1072 Err(Error::new_const(ErrorKind::Uncategorized, &"formatter error"))
1073 }
1074 }
1075 }
1076 }
1077
1078 /// Creates a "by reference" adapter for this instance of `Write`.
1079 ///
1080 /// The returned adapter also implements `Write` and will simply borrow this
1081 /// current writer.
1082 ///
1083 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1084 fn by_ref(&mut self) -> &mut Self
1085 where
1086 Self: Sized,
1087 {
1088 self
1089 }
1090}
1091
1092/// The `Seek` trait provides a cursor which can be moved within a stream of
1093/// bytes.
1094///
1095/// The stream typically has a fixed size, allowing seeking relative to either
1096/// end or the current offset.
1097///
1098/// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1099pub trait Seek {
1100 /// Seek to an offset, in bytes, in a stream.
1101 ///
1102 /// A seek beyond the end of a stream is allowed, but behavior is defined
1103 /// by the implementation.
1104 ///
1105 /// If the seek operation completed successfully,
1106 /// this method returns the new position from the start of the stream.
1107 /// That position can be used later with [`SeekFrom::Start`].
1108 ///
1109 /// # Errors
1110 ///
1111 /// Seeking can fail, for example because it might involve flushing a buffer.
1112 ///
1113 /// Seeking to a negative offset is considered an error.
1114 fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
1115
1116 /// Rewind to the beginning of a stream.
1117 ///
1118 /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
1119 ///
1120 /// # Errors
1121 ///
1122 /// Rewinding can fail, for example because it might involve flushing a buffer.
1123 ///
1124 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1125 fn rewind(&mut self) -> Result<()> {
1126 self.seek(SeekFrom::Start(0))?;
1127 Ok(())
1128 }
1129
1130 /// Returns the length of this stream (in bytes).
1131 ///
1132 /// This method is implemented using up to three seek operations. If this
1133 /// method returns successfully, the seek position is unchanged (i.e. the
1134 /// position before calling this method is the same as afterwards).
1135 /// However, if this method returns an error, the seek position is
1136 /// unspecified.
1137 ///
1138 /// If you need to obtain the length of *many* streams and you don't care
1139 /// about the seek position afterwards, you can reduce the number of seek
1140 /// operations by simply calling `seek(SeekFrom::End(0))` and using its
1141 /// return value (it is also the stream length).
1142 ///
1143 /// Note that length of a stream can change over time (for example, when
1144 /// data is appended to a file). So calling this method multiple times does
1145 /// not necessarily return the same length each time.
1146 ///
1147 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1148 fn stream_len(&mut self) -> Result<u64> {
1149 let old_pos = self.stream_position()?;
1150 let len = self.seek(SeekFrom::End(0))?;
1151
1152 // Avoid seeking a third time when we were already at the end of the
1153 // stream. The branch is usually way cheaper than a seek operation.
1154 if old_pos != len {
1155 self.seek(SeekFrom::Start(old_pos))?;
1156 }
1157
1158 Ok(len)
1159 }
1160
1161 /// Returns the current seek position from the start of the stream.
1162 ///
1163 /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
1164 ///
1165 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1166 fn stream_position(&mut self) -> Result<u64> {
1167 self.seek(SeekFrom::Current(0))
1168 }
1169}
1170
1171/// Enumeration of possible methods to seek within an I/O object.
1172///
1173/// It is used by the [`Seek`] trait.
1174#[derive(Copy, PartialEq, Eq, Clone, Debug)]
1175pub enum SeekFrom {
1176 /// Sets the offset to the provided number of bytes.
1177 Start(u64),
1178
1179 /// Sets the offset to the size of this object plus the specified number of
1180 /// bytes.
1181 ///
1182 /// It is possible to seek beyond the end of an object, but it's an error to
1183 /// seek before byte 0.
1184 End(i64),
1185
1186 /// Sets the offset to the current position plus the specified number of
1187 /// bytes.
1188 ///
1189 /// It is possible to seek beyond the end of an object, but it's an error to
1190 /// seek before byte 0.
1191 Current(i64),
1192}
1193
1194fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
1195 let mut read = 0;
1196 loop {
1197 let (done, used) = {
1198 let available = match r.fill_buf() {
1199 Ok(n) => n,
1200 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
1201 Err(e) => return Err(e),
1202 };
1203 match memchr::memchr(delim, available) {
1204 Some(i) => {
1205 buf.extend_from_slice(&available[..=i]);
1206 (true, i + 1)
1207 }
1208 None => {
1209 buf.extend_from_slice(available);
1210 (false, available.len())
1211 }
1212 }
1213 };
1214 r.consume(used);
1215 read += used;
1216 if done || used == 0 {
1217 return Ok(read);
1218 }
1219 }
1220}
1221
1222/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
1223/// to perform extra ways of reading.
1224///
1225/// For example, reading line-by-line is inefficient without using a buffer, so
1226/// if you want to read by line, you'll need `BufRead`, which includes a
1227/// [`read_line`] method as well as a [`lines`] iterator.
1228///
1229/// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1230///
1231/// If you have something that implements [`Read`], you can use the [`BufReader`
1232/// type][`BufReader`] to turn it into a `BufRead`.
1233///
1234/// <!-- TODO ADD EXAMPLE THAT DOES NOT USE FS -->
1235pub trait BufRead: Read {
1236 /// Returns the contents of the internal buffer, filling it with more data
1237 /// from the inner reader if it is empty.
1238 ///
1239 /// This function is a lower-level call. It needs to be paired with the
1240 /// [`consume`] method to function properly. When calling this
1241 /// method, none of the contents will be "read" in the sense that later
1242 /// calling `read` may return the same contents. As such, [`consume`] must
1243 /// be called with the number of bytes that are consumed from this buffer to
1244 /// ensure that the bytes are never returned twice.
1245 ///
1246 /// [`consume`]: BufRead::consume
1247 ///
1248 /// An empty buffer returned indicates that the stream has reached EOF.
1249 ///
1250 /// # Errors
1251 ///
1252 /// This function will return an I/O error if the underlying reader was
1253 /// read, but returned an error.
1254 ///
1255 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE STDIN -->
1256 fn fill_buf(&mut self) -> Result<&[u8]>;
1257
1258 /// Tells this buffer that `amt` bytes have been consumed from the buffer,
1259 /// so they should no longer be returned in calls to `read`.
1260 ///
1261 /// This function is a lower-level call. It needs to be paired with the
1262 /// [`fill_buf`] method to function properly. This function does
1263 /// not perform any I/O, it simply informs this object that some amount of
1264 /// its buffer, returned from [`fill_buf`], has been consumed and should
1265 /// no longer be returned. As such, this function may do odd things if
1266 /// [`fill_buf`] isn't called before calling it.
1267 ///
1268 /// The `amt` must be `<=` the number of bytes in the buffer returned by
1269 /// [`fill_buf`].
1270 ///
1271 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
1272 /// # Example code
1273 ///
1274 /// Since `consume()` is meant to be used with [`fill_buf`],
1275 /// that method's example includes an example of `consume()`.
1276 ///
1277 /// [`fill_buf`]: BufRead::fill_buf
1278 fn consume(&mut self, amt: usize);
1279
1280 /// Check if the underlying `Read` has any data left to be read.
1281 ///
1282 /// This function may fill the buffer to check for data,
1283 /// so this functions returns `Result<bool>`, not `bool`.
1284 ///
1285 /// Default implementation calls `fill_buf` and checks that
1286 /// returned slice is empty (which means that there is no data left,
1287 /// since EOF is reached).
1288 ///
1289 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE STDIN -->
1290 fn has_data_left(&mut self) -> Result<bool> {
1291 self.fill_buf().map(|b| !b.is_empty())
1292 }
1293
1294 /// Read all bytes into `buf` until the delimiter `byte` or EOF is reached.
1295 ///
1296 /// This function will read bytes from the underlying stream until the
1297 /// delimiter or EOF is found. Once found, all bytes up to, and including,
1298 /// the delimiter (if found) will be appended to `buf`.
1299 ///
1300 /// If successful, this function will return the total number of bytes read.
1301 ///
1302 /// This function is blocking and should be used carefully: it is possible for
1303 /// an attacker to continuously send bytes without ever sending the delimiter
1304 /// or EOF.
1305 ///
1306 /// # Errors
1307 ///
1308 /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
1309 /// will otherwise return any errors returned by [`fill_buf`].
1310 ///
1311 /// If an I/O error is encountered then all bytes read so far will be
1312 /// present in `buf` and its length will have been adjusted appropriately.
1313 ///
1314 /// [`fill_buf`]: BufRead::fill_buf
1315 ///
1316 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
1317 /// # Example code
1318 ///
1319 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1320 /// this example, we use [`Cursor`] to read all the bytes in a byte slice
1321 /// in hyphen delimited segments:
1322 ///
1323 /// ```
1324 /// use portable_io::{self as io, BufRead};
1325 ///
1326 /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
1327 /// let mut buf = vec![];
1328 ///
1329 /// // cursor is at 'l'
1330 /// let num_bytes = cursor.read_until(b'-', &mut buf)
1331 /// .expect("reading from cursor won't fail");
1332 /// assert_eq!(num_bytes, 6);
1333 /// assert_eq!(buf, b"lorem-");
1334 /// buf.clear();
1335 ///
1336 /// // cursor is at 'i'
1337 /// let num_bytes = cursor.read_until(b'-', &mut buf)
1338 /// .expect("reading from cursor won't fail");
1339 /// assert_eq!(num_bytes, 5);
1340 /// assert_eq!(buf, b"ipsum");
1341 /// buf.clear();
1342 ///
1343 /// // cursor is at EOF
1344 /// let num_bytes = cursor.read_until(b'-', &mut buf)
1345 /// .expect("reading from cursor won't fail");
1346 /// assert_eq!(num_bytes, 0);
1347 /// assert_eq!(buf, b"");
1348 /// ```
1349 fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
1350 read_until(self, byte, buf)
1351 }
1352
1353 /// Read all bytes until a newline (the `0xA` byte) is reached, and append
1354 /// them to the provided buffer.
1355 ///
1356 /// This function will read bytes from the underlying stream until the
1357 /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
1358 /// up to, and including, the delimiter (if found) will be appended to
1359 /// `buf`.
1360 ///
1361 /// If successful, this function will return the total number of bytes read.
1362 ///
1363 /// If this function returns [`Ok(0)`], the stream has reached EOF.
1364 ///
1365 /// This function is blocking and should be used carefully: it is possible for
1366 /// an attacker to continuously send bytes without ever sending a newline
1367 /// or EOF.
1368 ///
1369 /// [`Ok(0)`]: Ok
1370 ///
1371 /// # Errors
1372 ///
1373 /// This function has the same error semantics as [`read_until`] and will
1374 /// also return an error if the read bytes are not valid UTF-8. If an I/O
1375 /// error is encountered then `buf` may contain some bytes already read in
1376 /// the event that all data read so far was valid UTF-8.
1377 ///
1378 /// [`read_until`]: BufRead::read_until
1379 ///
1380 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
1381 /// # Example code
1382 ///
1383 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1384 /// this example, we use [`Cursor`] to read all the lines in a byte slice:
1385 ///
1386 /// ```
1387 /// use portable_io::{self as io, BufRead};
1388 ///
1389 /// let mut cursor = io::Cursor::new(b"foo\nbar");
1390 /// let mut buf = String::new();
1391 ///
1392 /// // cursor is at 'f'
1393 /// let num_bytes = cursor.read_line(&mut buf)
1394 /// .expect("reading from cursor won't fail");
1395 /// assert_eq!(num_bytes, 4);
1396 /// assert_eq!(buf, "foo\n");
1397 /// buf.clear();
1398 ///
1399 /// // cursor is at 'b'
1400 /// let num_bytes = cursor.read_line(&mut buf)
1401 /// .expect("reading from cursor won't fail");
1402 /// assert_eq!(num_bytes, 3);
1403 /// assert_eq!(buf, "bar");
1404 /// buf.clear();
1405 ///
1406 /// // cursor is at EOF
1407 /// let num_bytes = cursor.read_line(&mut buf)
1408 /// .expect("reading from cursor won't fail");
1409 /// assert_eq!(num_bytes, 0);
1410 /// assert_eq!(buf, "");
1411 /// ```
1412 fn read_line(&mut self, buf: &mut String) -> Result<usize> {
1413 // Note that we are not calling the `.read_until` method here, but
1414 // rather our hardcoded implementation. For more details as to why, see
1415 // the comments in `read_to_end`.
1416 unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
1417 }
1418
1419 /// Returns an iterator over the contents of this reader split on the byte
1420 /// `byte`.
1421 ///
1422 /// The iterator returned from this function will return instances of
1423 /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
1424 /// the delimiter byte at the end.
1425 ///
1426 /// This function will yield errors whenever [`read_until`] would have
1427 /// also yielded an error.
1428 ///
1429 /// [io::Result]: self::Result "io::Result"
1430 /// [`read_until`]: BufRead::read_until
1431 ///
1432 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
1433 /// # Example code
1434 ///
1435 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1436 /// this example, we use [`Cursor`] to iterate over all hyphen delimited
1437 /// segments in a byte slice
1438 ///
1439 /// ```
1440 /// use portable_io::{self as io, BufRead};
1441 ///
1442 /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
1443 ///
1444 /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
1445 /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
1446 /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
1447 /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
1448 /// assert_eq!(split_iter.next(), None);
1449 /// ```
1450 fn split(self, byte: u8) -> Split<Self>
1451 where
1452 Self: Sized,
1453 {
1454 Split { buf: self, delim: byte }
1455 }
1456
1457 /// Returns an iterator over the lines of this reader.
1458 ///
1459 /// The iterator returned from this function will yield instances of
1460 /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
1461 /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
1462 ///
1463 /// [io::Result]: self::Result "io::Result"
1464 ///
1465 /// <!-- UPDATED TITLE in this fork to avoid singular vs plural issue - TODO PROPOSE UPDATE IN UPSTREAM RUST -->
1466 /// # Example code
1467 ///
1468 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1469 /// this example, we use [`Cursor`] to iterate over all the lines in a byte
1470 /// slice.
1471 ///
1472 /// ```
1473 /// use portable_io::{self as io, BufRead};
1474 ///
1475 /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
1476 ///
1477 /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
1478 /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
1479 /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
1480 /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
1481 /// assert_eq!(lines_iter.next(), None);
1482 /// ```
1483 ///
1484 /// # Errors
1485 ///
1486 /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
1487 fn lines(self) -> Lines<Self>
1488 where
1489 Self: Sized,
1490 {
1491 Lines { buf: self }
1492 }
1493}
1494
1495/// Adapter to chain together two readers.
1496///
1497/// This struct is generally created by calling [`chain`] on a reader.
1498/// Please see the documentation of [`chain`] for more details.
1499///
1500/// [`chain`]: Read::chain
1501#[derive(Debug)]
1502pub struct Chain<T, U> {
1503 first: T,
1504 second: U,
1505 done_first: bool,
1506}
1507
1508impl<T, U> Chain<T, U> {
1509 /// Consumes the `Chain`, returning the wrapped readers.
1510 ///
1511 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1512 pub fn into_inner(self) -> (T, U) {
1513 (self.first, self.second)
1514 }
1515
1516 /// Gets references to the underlying readers in this `Chain`.
1517 ///
1518 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1519 pub fn get_ref(&self) -> (&T, &U) {
1520 (&self.first, &self.second)
1521 }
1522
1523 /// Gets mutable references to the underlying readers in this `Chain`.
1524 ///
1525 /// Care should be taken to avoid modifying the internal I/O state of the
1526 /// underlying readers as doing so may corrupt the internal state of this
1527 /// `Chain`.
1528 ///
1529 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1530 pub fn get_mut(&mut self) -> (&mut T, &mut U) {
1531 (&mut self.first, &mut self.second)
1532 }
1533}
1534
1535impl<T: Read, U: Read> Read for Chain<T, U> {
1536 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
1537 if !self.done_first {
1538 match self.first.read(buf)? {
1539 0 if !buf.is_empty() => self.done_first = true,
1540 n => return Ok(n),
1541 }
1542 }
1543 self.second.read(buf)
1544 }
1545
1546 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
1547 if !self.done_first {
1548 match self.first.read_vectored(bufs)? {
1549 0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
1550 n => return Ok(n),
1551 }
1552 }
1553 self.second.read_vectored(bufs)
1554 }
1555}
1556
1557impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
1558 fn fill_buf(&mut self) -> Result<&[u8]> {
1559 if !self.done_first {
1560 match self.first.fill_buf()? {
1561 buf if buf.is_empty() => {
1562 self.done_first = true;
1563 }
1564 buf => return Ok(buf),
1565 }
1566 }
1567 self.second.fill_buf()
1568 }
1569
1570 fn consume(&mut self, amt: usize) {
1571 if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
1572 }
1573}
1574
1575#[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1576impl<T, U> SizeHint for Chain<T, U> {
1577 #[inline]
1578 fn lower_bound(&self) -> usize {
1579 SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
1580 }
1581
1582 #[inline]
1583 fn upper_bound(&self) -> Option<usize> {
1584 match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
1585 (Some(first), Some(second)) => first.checked_add(second),
1586 _ => None,
1587 }
1588 }
1589}
1590
1591/// Reader adapter which limits the bytes read from an underlying reader.
1592///
1593/// This struct is generally created by calling [`take`] on a reader.
1594/// Please see the documentation of [`take`] for more details.
1595///
1596/// [`take`]: Read::take
1597#[derive(Debug)]
1598pub struct Take<T> {
1599 inner: T,
1600 limit: u64,
1601}
1602
1603impl<T> Take<T> {
1604 /// Returns the number of bytes that can be read before this instance will
1605 /// return EOF.
1606 ///
1607 /// # Note
1608 ///
1609 /// This instance may reach `EOF` after reading fewer bytes than indicated by
1610 /// this method if the underlying [`Read`] instance reaches EOF.
1611 ///
1612 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1613 pub fn limit(&self) -> u64 {
1614 self.limit
1615 }
1616
1617 /// Sets the number of bytes that can be read before this instance will
1618 /// return EOF. This is the same as constructing a new `Take` instance, so
1619 /// the amount of bytes read and the previous limit value don't matter when
1620 /// calling this method.
1621 ///
1622 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1623 pub fn set_limit(&mut self, limit: u64) {
1624 self.limit = limit;
1625 }
1626
1627 /// Consumes the `Take`, returning the wrapped reader.
1628 ///
1629 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1630 pub fn into_inner(self) -> T {
1631 self.inner
1632 }
1633
1634 /// Gets a reference to the underlying reader.
1635 ///
1636 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1637 pub fn get_ref(&self) -> &T {
1638 &self.inner
1639 }
1640
1641 /// Gets a mutable reference to the underlying reader.
1642 ///
1643 /// Care should be taken to avoid modifying the internal I/O state of the
1644 /// underlying reader as doing so may corrupt the internal limit of this
1645 /// `Take`.
1646 ///
1647 /// <!-- TODO ADD EXAMPLE CODE THAT DOES NOT USE FS -->
1648 pub fn get_mut(&mut self) -> &mut T {
1649 &mut self.inner
1650 }
1651}
1652
1653impl<T: Read> Read for Take<T> {
1654 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
1655 // Don't call into inner reader at all at EOF because it may still block
1656 if self.limit == 0 {
1657 return Ok(0);
1658 }
1659
1660 let max = cmp::min(buf.len() as u64, self.limit) as usize;
1661 let n = self.inner.read(&mut buf[..max])?;
1662 self.limit -= n as u64;
1663 Ok(n)
1664 }
1665
1666 fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
1667 // Don't call into inner reader at all at EOF because it may still block
1668 if self.limit == 0 {
1669 return Ok(());
1670 }
1671
1672 let prev_filled = buf.filled_len();
1673
1674 if self.limit <= buf.remaining() as u64 {
1675 // if we just use an as cast to convert, limit may wrap around on a 32 bit target
1676 let limit = cmp::min(self.limit, usize::MAX as u64) as usize;
1677
1678 let extra_init = cmp::min(limit as usize, buf.initialized_len() - buf.filled_len());
1679
1680 // SAFETY: no uninit data is written to ibuf
1681 let ibuf = unsafe { &mut buf.unfilled_mut()[..limit] };
1682
1683 let mut sliced_buf = ReadBuf::uninit(ibuf);
1684
1685 // SAFETY: extra_init bytes of ibuf are known to be initialized
1686 unsafe {
1687 sliced_buf.assume_init(extra_init);
1688 }
1689
1690 self.inner.read_buf(&mut sliced_buf)?;
1691
1692 let new_init = sliced_buf.initialized_len();
1693 let filled = sliced_buf.filled_len();
1694
1695 // sliced_buf / ibuf must drop here
1696
1697 // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
1698 unsafe {
1699 buf.assume_init(new_init);
1700 }
1701
1702 buf.add_filled(filled);
1703
1704 self.limit -= filled as u64;
1705 } else {
1706 self.inner.read_buf(buf)?;
1707
1708 //inner may unfill
1709 self.limit -= buf.filled_len().saturating_sub(prev_filled) as u64;
1710 }
1711
1712 Ok(())
1713 }
1714}
1715
1716impl<T: BufRead> BufRead for Take<T> {
1717 fn fill_buf(&mut self) -> Result<&[u8]> {
1718 // Don't call into inner reader at all at EOF because it may still block
1719 if self.limit == 0 {
1720 return Ok(&[]);
1721 }
1722
1723 let buf = self.inner.fill_buf()?;
1724 let cap = cmp::min(buf.len() as u64, self.limit) as usize;
1725 Ok(&buf[..cap])
1726 }
1727
1728 fn consume(&mut self, amt: usize) {
1729 // Don't let callers reset the limit by passing an overlarge value
1730 let amt = cmp::min(amt as u64, self.limit) as usize;
1731 self.limit -= amt as u64;
1732 self.inner.consume(amt);
1733 }
1734}
1735
1736#[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1737impl<T> SizeHint for Take<T> {
1738 #[inline]
1739 fn lower_bound(&self) -> usize {
1740 cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
1741 }
1742
1743 #[inline]
1744 fn upper_bound(&self) -> Option<usize> {
1745 match SizeHint::upper_bound(&self.inner) {
1746 Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
1747 None => self.limit.try_into().ok(),
1748 }
1749 }
1750}
1751
1752/// An iterator over `u8` values of a reader.
1753///
1754/// This struct is generally created by calling [`bytes`] on a reader.
1755/// Please see the documentation of [`bytes`] for more details.
1756///
1757/// [`bytes`]: Read::bytes
1758#[derive(Debug)]
1759pub struct Bytes<R> {
1760 inner: R,
1761}
1762
1763impl<R: Read> Iterator for Bytes<R> {
1764 type Item = Result<u8>;
1765
1766 fn next(&mut self) -> Option<Result<u8>> {
1767 let mut byte = 0;
1768 loop {
1769 return match self.inner.read(slice::from_mut(&mut byte)) {
1770 Ok(0) => None,
1771 Ok(..) => Some(Ok(byte)),
1772 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
1773 Err(e) => Some(Err(e)),
1774 };
1775 }
1776 }
1777
1778 #[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1779 fn size_hint(&self) -> (usize, Option<usize>) {
1780 SizeHint::size_hint(&self.inner)
1781 }
1782}
1783
1784#[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1785trait SizeHint {
1786 fn lower_bound(&self) -> usize;
1787
1788 fn upper_bound(&self) -> Option<usize>;
1789
1790 fn size_hint(&self) -> (usize, Option<usize>) {
1791 (self.lower_bound(), self.upper_bound())
1792 }
1793}
1794
1795#[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1796impl<T> SizeHint for T {
1797 #[inline]
1798 default fn lower_bound(&self) -> usize {
1799 0
1800 }
1801
1802 #[inline]
1803 default fn upper_bound(&self) -> Option<usize> {
1804 None
1805 }
1806}
1807
1808#[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1809impl<T> SizeHint for &mut T {
1810 #[inline]
1811 fn lower_bound(&self) -> usize {
1812 SizeHint::lower_bound(*self)
1813 }
1814
1815 #[inline]
1816 fn upper_bound(&self) -> Option<usize> {
1817 SizeHint::upper_bound(*self)
1818 }
1819}
1820
1821#[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1822impl<T> SizeHint for Box<T> {
1823 #[inline]
1824 fn lower_bound(&self) -> usize {
1825 SizeHint::lower_bound(&**self)
1826 }
1827
1828 #[inline]
1829 fn upper_bound(&self) -> Option<usize> {
1830 SizeHint::upper_bound(&**self)
1831 }
1832}
1833
1834#[cfg(portable_io_unstable_all)] // unstable feature: size hint optimization (requires Rust nightly for min_specialization)
1835impl SizeHint for &[u8] {
1836 #[inline]
1837 fn lower_bound(&self) -> usize {
1838 self.len()
1839 }
1840
1841 #[inline]
1842 fn upper_bound(&self) -> Option<usize> {
1843 Some(self.len())
1844 }
1845}
1846
1847/// An iterator over the contents of an instance of `BufRead` split on a
1848/// particular byte.
1849///
1850/// This struct is generally created by calling [`split`] on a `BufRead`.
1851/// Please see the documentation of [`split`] for more details.
1852///
1853/// [`split`]: BufRead::split
1854#[derive(Debug)]
1855pub struct Split<B> {
1856 buf: B,
1857 delim: u8,
1858}
1859
1860impl<B: BufRead> Iterator for Split<B> {
1861 type Item = Result<Vec<u8>>;
1862
1863 fn next(&mut self) -> Option<Result<Vec<u8>>> {
1864 let mut buf = Vec::new();
1865 match self.buf.read_until(self.delim, &mut buf) {
1866 Ok(0) => None,
1867 Ok(_n) => {
1868 if buf[buf.len() - 1] == self.delim {
1869 buf.pop();
1870 }
1871 Some(Ok(buf))
1872 }
1873 Err(e) => Some(Err(e)),
1874 }
1875 }
1876}
1877
1878/// An iterator over the lines of an instance of `BufRead`.
1879///
1880/// This struct is generally created by calling [`lines`] on a `BufRead`.
1881/// Please see the documentation of [`lines`] for more details.
1882///
1883/// [`lines`]: BufRead::lines
1884#[derive(Debug)]
1885pub struct Lines<B> {
1886 buf: B,
1887}
1888
1889impl<B: BufRead> Iterator for Lines<B> {
1890 type Item = Result<String>;
1891
1892 fn next(&mut self) -> Option<Result<String>> {
1893 let mut buf = String::new();
1894 match self.buf.read_line(&mut buf) {
1895 Ok(0) => None,
1896 Ok(_n) => {
1897 if buf.ends_with('\n') {
1898 buf.pop();
1899 if buf.ends_with('\r') {
1900 buf.pop();
1901 }
1902 }
1903 Some(Ok(buf))
1904 }
1905 Err(e) => Some(Err(e)),
1906 }
1907 }
1908}