1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
use crate::fac::Fac;
use crate::pop_prob_error::PopProbError;
use crate::snsk::Snsk;
use num_bigint::ToBigUint;
use num_traits::cast::ToPrimitive;

mod fac;
mod pop_prob_error;
mod snsk;

pub struct Calculator {
    fac: Fac,
    snsk: Snsk,
}

impl Calculator {
    pub fn new() -> Self {
        Self {
            fac: Fac::new(),
            snsk: Snsk::new(),
        }
    }

    /// Calculates the most likely population size if `sample` elements are selected randomly
    /// with replacement from the population and `unique` of these elements are unique.
    pub fn pop(&mut self, sample: u32, unique: u32) -> Result<u32, PopProbError> {
        let mut prev_prev = None;
        let mut prev: Option<(u32, f64)> = None;
        for pop in (1_u32..).map(|x| unique + 2_u32.pow(x - 1) - 1) {
            let v = (pop, self.prob_unique(pop, sample, unique)?);
            if let Some(prev) = prev {
                if v.1 < prev.1 {
                    return if let Some(prev_prev) = prev_prev {
                        self.find_peak(sample, unique, prev_prev, prev, v)
                    } else {
                        Ok(prev.0)
                    };
                }
            }
            prev_prev = prev;
            prev = Some(v);
        }
        Err(PopProbError::Generic)
    }

    fn find_peak(
        &mut self,
        sample: u32,
        unique: u32,
        lbound: (u32, f64),
        pivot: (u32, f64),
        ubound: (u32, f64),
    ) -> Result<u32, PopProbError> {
        if ubound.0 == pivot.0 + 1 {
            return Ok(pivot.0);
        }
        let (lbound, pivot, ubound) = if ubound.0 - pivot.0 > pivot.0 - lbound.0 {
            let x = (pivot.0 + ubound.0) / 2;
            let v = (x, self.prob_unique(x, sample, unique)?);
            if v.1 < pivot.1 {
                (lbound, pivot, v)
            } else {
                (pivot, v, ubound)
            }
        } else {
            let x = (lbound.0 + pivot.0) / 2;
            let v = (x, self.prob_unique(x, sample, unique)?);
            if pivot.1 < v.1 {
                (lbound, v, pivot)
            } else {
                (v, pivot, ubound)
            }
        };
        self.find_peak(sample, unique, lbound, pivot, ubound)
    }

    /// Calculates the probability that a population contains exactly `size` unique elements if
    /// `sample` elements are selected randomly with replacement from the population and
    /// `unique` of these elements are unique.
    pub fn prob_pop(&mut self, sample: u32, unique: u32, size: u32) -> Result<f64, PopProbError> {
        let numerator = self.prob_unique(size, sample, unique)?;
        let mut denominator = numerator;
        let mut latest_prob = numerator;
        let mut low_size = size - 1;
        let mut low_prob = self.prob_unique(low_size, sample, unique)?;
        let mut high_size = size + 1;
        let mut high_prob = self.prob_unique(high_size, sample, unique)?;
        while latest_prob * 10000.0 > denominator {
            if low_prob > high_prob {
                latest_prob = low_prob;
                denominator += low_prob;
                low_size -= 1;
                low_prob = if low_size < unique {
                    0.0
                } else {
                    self.prob_unique(low_size, sample, unique)?
                };
            } else {
                latest_prob = high_prob;
                denominator += high_prob;
                high_size += 1;
                high_prob = self.prob_unique(high_size, sample, unique)?;
            };
        }
        Ok(numerator / denominator)
    }

    /// Calculates the probability that `unique` unique elements will be selected after
    /// `sample` elements are selected randomly with replacement
    /// from a population containing exactly `size` unique elements
    pub fn prob_unique(
        &mut self,
        size: u32,
        sample: u32,
        unique: u32,
    ) -> Result<f64, PopProbError> {
        if unique > size {
            return Err(PopProbError::UniqueGreaterThanSize((unique, size)));
        }
        if unique > sample {
            return Err(PopProbError::UniqueGreaterThanSample((unique, sample)));
        }
        if unique == 0 {
            return Err(PopProbError::UniqueZero);
        }

        let numerator = {
            let snsk = self.snsk.calc(sample, unique)?;
            let fac = self.fac.fac(size).clone();
            snsk * fac
        };

        let denominator = {
            let pow = size.to_biguint().unwrap().pow(sample as u32);
            let fac = self.fac.fac(size - unique).clone();
            pow * fac
        };

        Ok((numerator * u32::max_value() / denominator)
            .to_f64()
            .unwrap()
            / u32::max_value() as f64)
    }
}