1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//! A [Hindley-Milner polymorphic typing system].
//!
//! For brevity, the documentation heavily uses the two provided macros when
//! creating types.
//!
//! A [`TypeSchema`] is a type that may have universally quantified type
//! variables. A [`Context`] keeps track of assignments made to type variables
//! so that you may manipulate [`Type`]s, which are unquantified and concrete.
//! Hence a `TypeSchema` can be instantiated, using [`TypeSchema::instantiate`],
//! into a `Context` in order to produce a corresponding `Type`. Two `Type`s
//! under a particular `Context` can be unified using [`Context::unify`], which
//! may record new type variable assignments in the `Context`.
//!
//! # Examples
//!
//! The basics:
//!
//! ```
//! use polytype::{ptp, tp, Context};
//!
//! // filter: ∀α. (α → bool) → [α] → [α]
//! let t = ptp!(0; @arrow[
//!     tp!(@arrow[tp!(0), tp!(bool)]),
//!     tp!(list(tp!(0))),
//!     tp!(list(tp!(0))),
//! ]);
//!
//! // Quantified type schemas provide polymorphic behavior.
//! assert_eq!(t.to_string(), "∀t0. (t0 → bool) → list(t0) → list(t0)");
//!
//! // We can instantiate type schemas to remove quantifiers
//! let mut ctx = Context::default();
//! let t = t.instantiate(&mut ctx);
//! assert_eq!(t.to_string(), "(t0 → bool) → list(t0) → list(t0)");
//!
//! // We can register a substitution for t0 in the context:
//! ctx.extend(0, tp!(int));
//! let t = t.apply(&ctx);
//! assert_eq!(t.to_string(), "(int → bool) → list(int) → list(int)");
//! ```
//!
//! Extended example:
//!
//! ```
//! use polytype::{ptp, tp, Context};
//!
//! // reduce: ∀α. ∀β. (β → α → β) → β → [α] → β
//! // We can represent the type schema of reduce using the included macros:
//! let t = ptp!(0, 1; @arrow[
//!     tp!(@arrow[tp!(1), tp!(0), tp!(1)]),
//!     tp!(1),
//!     tp!(list(tp!(0))),
//!     tp!(1),
//! ]);
//! assert_eq!(t.to_string(), "∀t0. ∀t1. (t1 → t0 → t1) → t1 → list(t0) → t1");
//!
//! // Let's consider reduce when applied to a function that adds two ints
//!
//! // First, we create a new typing context to manage typing bookkeeping.
//! let mut ctx = Context::default();
//!
//! // Let's create a type representing binary addition.
//! let tplus = tp!(@arrow[tp!(int), tp!(int), tp!(int)]);
//! assert_eq!(tplus.to_string(), "int → int → int");
//!
//! // We instantiate the type schema of reduce within our context
//! // so new type variables will be distinct
//! let t = t.instantiate(&mut ctx);
//! assert_eq!(t.to_string(), "(t1 → t0 → t1) → t1 → list(t0) → t1");
//!
//! // By unifying, we can ensure function applications obey type requirements.
//! let treturn = ctx.new_variable();
//! let targ1 = ctx.new_variable();
//! let targ2 = ctx.new_variable();
//! ctx.unify(
//!     &t,
//!     &tp!(@arrow[
//!         tplus.clone(),
//!         targ1.clone(),
//!         targ2.clone(),
//!         treturn.clone(),
//!     ]),
//! ).expect("unifies");
//!
//! // We can also now infer what arguments are needed and what gets returned
//! assert_eq!(targ1.apply(&ctx), tp!(int));             // inferred arg 1: int
//! assert_eq!(targ2.apply(&ctx), tp!(list(tp!(int))));  // inferred arg 2: list(int)
//! assert_eq!(treturn.apply(&ctx), tp!(int));           // inferred return: int
//!
//! // Finally, we can see what form reduce takes by applying the new substitution
//! let t = t.apply(&ctx);
//! assert_eq!(t.to_string(), "(int → int → int) → int → list(int) → int");
//! ```
//!
//! [`Context`]: struct.Context.html
//! [`Context::unify`]: struct.Context.html#method.unify
//! [`Type`]: enum.Type.html
//! [`TypeSchema::instantiate`]: enum.TypeSchema.html#method.instantiate
//! [`TypeSchema`]: enum.TypeSchema.html
//! [Hindley-Milner polymorphic typing system]: https://en.wikipedia.org/wiki/Hindley–Milner_type_system

mod context;
mod macros;
mod parser;
mod types;

pub use context::{Context, ContextChange, UnificationError};
pub use types::{Type, TypeSchema, Variable};

/// Types require a `Name` for comparison.
///
/// We mandate that [`arrow`] be implemented for any such names, and we provide an implementation
/// for `&'static str`.
///
/// # Examples
///
/// Using static strings:
///
/// ```
/// # use polytype::Type;
/// let t = Type::Constructed("int", vec![])
/// # ;
/// ```
///
/// A custom implementation:
///
/// ```
/// # use polytype::{Type, Name};
/// #[derive(Clone, PartialEq, Eq)]
/// struct N(u8);
///
/// impl Name for N {
///     fn arrow() -> Self {
///         N(0)
///     }
/// }
///
/// let t: Type<N> = Type::Constructed(N(1), vec![])
/// # ;
/// ```
///
/// [`arrow`]: #tymethod.arrow
pub trait Name: Clone + Eq {
    /// A specific name representing an arrow must be declared.
    fn arrow() -> Self;
    /// A way of displaying the name.
    fn show(&self) -> String {
        String::from("<unshowable type>")
    }
    /// To go from a particular name's string representation to a `Name`. This should round-trip
    /// with [`show`].
    ///
    /// [`show`]: #method.show
    fn parse(_s: &str) -> Result<Self, ()> {
        Err(())
    }

    fn is_arrow(&self) -> bool {
        *self == Self::arrow()
    }
}
impl Name for &'static str {
    /// The rightwards arrow in unicode: `→`.
    #[inline(always)]
    fn arrow() -> &'static str {
        "→"
    }
    #[inline(always)]
    fn show(&self) -> String {
        self.to_string()
    }
    /// **LEAKY** because it gives the string a static lifetime.
    #[inline(always)]
    fn parse(s: &str) -> Result<&'static str, ()> {
        Ok(unsafe { &mut *Box::into_raw(s.to_string().into_boxed_str()) })
    }
    /// The rightwards arrow in unicode: `→`.
    #[inline(always)]
    fn is_arrow(&self) -> bool {
        *self == "→"
    }
}

/// An interface for things that are typable.
///
/// # Examples
///
/// In the simplest case, you statically know what the type is:
///
/// ```
/// use polytype::{tp, Infer, Type, UnificationError};
///
/// struct MyPrimitive;
/// impl Infer<()> for MyPrimitive {
///     fn infer(&self, _ctx: &()) -> Result<Type, UnificationError> {
///         Ok(tp!(my_thing_tp))
///     }
/// }
///
/// assert_eq!(MyPrimitive.infer(&()), Ok(tp!(my_thing_tp)));
/// ```
///
/// A more complex case builds a new type given typed items.
///
/// ```
/// use polytype::{ptp, tp, Context, Infer, Type, TypeSchema, UnificationError};
/// use std::cell::RefCell;
///
/// type MyCtx = RefCell<Context>; // the RefCell allows us to mutate the context during inference
///
/// struct Primitive(TypeSchema);
/// impl Infer<MyCtx> for Primitive {
///     fn infer(&self, ctx: &MyCtx) -> Result<Type, UnificationError> {
///         Ok(self.0.instantiate(&mut ctx.borrow_mut()))
///     }
/// }
///
/// struct Application<A, B> {
///     left: A,
///     right: B,
/// }
/// impl<A: Infer<MyCtx>, B: Infer<MyCtx>> Infer<MyCtx> for Application<A, B> {
///     fn infer(&self, ctx: &MyCtx) -> Result<Type, UnificationError> {
///         let ft = self.left.infer(ctx)?;
///         let xt = self.right.infer(ctx)?;
///         let mut ctx = ctx.borrow_mut();
///         let ret = ctx.new_variable();
///         ctx.unify(&ft, &Type::arrow(xt, ret.clone()))?;
///         Ok(ret.apply(&ctx))
///     }
/// }
///
/// let f = Primitive(ptp!(@arrow[tp!(foo), tp!(bar)]));
/// let x = Primitive(ptp!(foo));
/// let fx = Application { left: f, right: x };
/// let ctx = RefCell::new(Context::default());
/// assert_eq!(fx.infer(&ctx), Ok(tp!(bar)));
/// ```
///
/// A more sophisticated case has the types maintained externally:
///
/// ```
/// use polytype::{ptp, tp, Context, Infer, Type, TypeSchema, UnificationError};
/// use std::{cell::RefCell, collections::HashMap};
///
/// // in this example, every Term has a Type defined through the Lexicon
/// enum Term {
///     GlobalVariable(u32),
///     Application { op: u32, args: Vec<Term> },
/// }
/// struct Lexicon {
///     ctx: RefCell<Context>,
///     ops: HashMap<u32, TypeSchema>,
///     global_vars: RefCell<HashMap<u32, Type>>,
/// }
///
/// impl Infer<Lexicon> for Term {
///     fn infer(&self, lex: &Lexicon) -> Result<Type, UnificationError> {
///         match self {
///             Term::GlobalVariable(v) => Ok(lex
///                 .global_vars
///                 .borrow_mut()
///                 .entry(*v)
///                 .or_insert_with(|| lex.ctx.borrow_mut().new_variable())
///                 .clone()),
///             Term::Application { op, args } => {
///                 let mut arg_types: Vec<Type> = args
///                     .into_iter()
///                     .map(|arg| arg.infer(lex))
///                     .collect::<Result<Vec<_>, _>>()?;
///                 let mut ctx = lex.ctx.borrow_mut();
///                 let ret = ctx.new_variable();
///                 arg_types.push(ret.clone());
///                 let func_type = lex.ops[op].instantiate(&mut ctx);
///                 ctx.unify(&func_type, &Type::from(arg_types))?;
///                 Ok(ret.apply(&ctx))
///             }
///         }
///     }
/// }
///
/// let mut h = HashMap::new();
/// h.insert(0, ptp!(0; @arrow[tp!(0), tp!(foo)]));
/// h.insert(1, ptp!(@arrow[tp!(bar), tp!(baz)]));
/// let lex = Lexicon {
///     ctx: RefCell::new(Context::default()),
///     ops: h,
///     global_vars: RefCell::new(HashMap::new()),
/// };
/// let term = Term::Application {
///     op: 0,
///     args: vec![Term::Application {
///         op: 1,
///         args: vec![Term::GlobalVariable(42)],
///     }],
/// };
/// assert_eq!(term.infer(&lex), Ok(tp!(foo)));
/// assert_eq!(
///     lex.global_vars
///         .borrow()
///         .get(&42)
///         .map(|t| t.apply(&lex.ctx.borrow())),
///     Some(tp!(bar))
/// );
/// ```
pub trait Infer<Context, E = UnificationError, N: Name = &'static str> {
    fn infer(&self, ctx: &Context) -> Result<Type<N>, E>;
}