1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
pub mod add;
pub mod index;
pub mod iter;
pub mod math;
pub mod mul;
pub mod rem;
pub mod sub;

/// A wrapper struct around a `Vec<isize>` which treats the entries of the `Vec` as the coefficients
/// of a polynomial.
///
/// # Examples
/// ```
/// use polynomint::{Polynomial, poly};
///
/// let quadratic = poly![1, 2, 1]; // x^2 + 2x + 1
/// let linear = poly![-6, 1]; // x - 6
/// assert_eq!(&quadratic * 5, poly![5, 10, 5]);
/// assert_eq!(&quadratic * &linear, poly![-6, -11, -4, 1]);
///
/// let mut resultant = &quadratic * &linear;
/// resultant %= 5;
/// assert_eq!(resultant, poly![-1, -1, -4, 1]);
///
/// let resultant2 = (&quadratic * &linear).rem_euclid(5);
/// assert_eq!(resultant2, poly![4, 4, 1, 1]);
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Polynomial {
    coeffs: Vec<isize>,
}

impl Polynomial {
    /// Creates a polynomial with the given coefficients, stored in increasing order, with
    /// any trailing (higher-degree) zeroes removed.
    ///
    /// # Examples
    /// ```
    /// use polynomint::Polynomial;
    ///
    /// let quadratic = Polynomial::new(vec![1, 2, 3]); // 3x^2 + 2x + 1
    /// let cubic = Polynomial::new(vec![8, 12, 6, 1]); // x^3 + 6x^2 + 12x + 8
    /// ```
    pub fn new(coeffs: Vec<isize>) -> Self {
        let mut output = Self { coeffs };
        output.reduce();
        output
    }

    /// Creates the zero polynomial, which is stored internally as an empty vector.
    pub fn zero() -> Self {
        Self { coeffs: Vec::new() }
    }

    /// Creates a constant polynomial with coefficient equal to the argument passed;
    /// if the argument passed is zero, it is stored internally as an empty vector
    /// to match `zero()`.
    pub fn constant(i: isize) -> Self {
        if i == 0 {
            Self::zero()
        } else {
            Self { coeffs: vec![i] }
        }
    }
    /// Gives the highest power which has a nonzero coefficient; constants are degree zero, except
    /// the constant polynomial 0, which has degree -1.
    ///
    /// # Examples
    /// ```
    /// use polynomint::{Polynomial, poly};
    ///
    /// let zero = Polynomial::zero();
    /// let alt_zero = Polynomial::constant(0);
    /// let three = Polynomial::constant(3);
    /// let classic = poly![1, 2, 1, 0, 0]; // x^2 + 2x + 1
    ///
    /// assert_eq!(zero.degree(), -1);
    /// assert_eq!(alt_zero.degree(), -1);
    /// assert_eq!(three.degree(), 0);
    /// assert_eq!(classic.degree(), 2);
    /// ```
    pub fn degree(&self) -> isize {
        (self.coeffs.len() as isize) - 1
    }

    /// Checks whether a polynomial is the zero polynomial.
    ///
    /// # Examples
    /// ```
    /// use polynomint::{Polynomial, poly};
    ///
    /// let zero = Polynomial::zero();
    /// let also_zero = Polynomial::constant(0);
    /// let yet_again_zero = poly![0, 0, 0, 0];
    /// let even_more_zero = poly![1, 2, 1] - poly![1, 2, 1];
    /// let not_zero = poly![0, 1];
    ///
    /// assert!(zero.is_zero());
    /// assert!(also_zero.is_zero());
    /// assert!(yet_again_zero.is_zero());
    /// assert!(even_more_zero.is_zero());
    /// assert!(!not_zero.is_zero());
    /// ```
    pub fn is_zero(&self) -> bool {
        self.degree() == -1
    }

    /// Returns a reference to `self`'s vector of coefficients, in order of ascending
    /// degree (`poly.coeffs()[n]` is the `x^n` coefficient of `poly`).
    pub fn coeffs(&self) -> &Vec<isize> {
        &(self.coeffs)
    }

    /// Returns a mutable reference to `self`'s vector of coefficients, in order of
    /// ascending degree (`poly.coeffs_mut()[n]` is the `x^n` coefficient of `poly`).
    pub fn coeffs_mut(&mut self) -> &mut Vec<isize> {
        &mut (self.coeffs)
    }

    /// Removes trailing zeroes from a polynomial. Used to make sure the API only exposes
    /// polynomials with no stored zeroes of higher-order, both to keep them as lightweight
    /// as possible and because this invariant is taken advantage of by functions like
    /// degree().
    fn reduce(&mut self) {
        while self.coeffs.last() == Some(&0) {
            self.coeffs.pop();
        }
    }
}

impl std::fmt::Display for Polynomial {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut s = String::new();
        // if our polynomial is zero, the big-ass else block doesn't do anything, so
        // we just separately handle that case
        if self.is_zero() {
            s += &format!("{}", 0);
        } else {
            // this flag is basically "have we written a term yet", so we know whether
            // to write plus/minus signs and to treat minus signs as operations rather
            // than as prefixes
            let mut plus_flag = false;
            for (n, &i) in self.coeffs.iter().enumerate().rev() {
                // only display terms with nonzero coefficients
                if i != 0 {
                    // if we're past the first term, print the appropriate operation
                    // sign first
                    if plus_flag {
                        if i < 0 {
                            s += " - ";
                        } else {
                            s += " + "
                        }
                    }
                    // if our term is constant,
                    if n == 0 {
                        // just display that constant, or its absolute value if we already
                        // wrote a minus sign
                        s += &format!("{}", if plus_flag { i.abs() } else { i });
                    // if our term is linear,
                    } else if n == 1 {
                        // if it's 1, just write "x";
                        if i == 1 {
                            s += "x";
                        // if it's -1, and if we're writing the first term, put a minus sign
                        // in front
                        } else if i == -1 {
                            s += &format!("{}x", if plus_flag { "" } else { "-" });
                        // otherwise, just display the coefficient, or its absolute value
                        // if we already wrote a minus sign
                        } else {
                            s += &format!("{}x", if plus_flag { i.abs() } else { i });
                        }
                    // rest of cases as above, but with the powers being displayed as well
                    } else if i == 1 {
                        s += &format!("x^{}", n);
                    } else if i == -1 {
                        s += &format!("{}x^{}", if plus_flag { "" } else { "-" }, n);
                    } else {
                        s += &format!("{}x^{}", if plus_flag { i.abs() } else { i }, n);
                    }
                    plus_flag = true;
                }
            }
        }
        write!(f, "{}", s)
    }
}

/// A convenience macro for writing polynomials; essentially a wrapper around `vec![...]`.
#[macro_export]
macro_rules! poly {
    () => (
        Polynomial::zero();
    );
    ($($x:expr),*) => (
        Polynomial::new(vec![$($x),*]);
    )
}

#[cfg(test)]
mod tests {
    use crate::{poly, Polynomial};
    #[test]
    fn it_works() {
        let mut quadratic = poly![1, 2, 1]; // x^2 + 2x + 1
        let linear = poly![-6, 1]; // x - 6
        assert_eq!(&quadratic + &linear, poly![-5, 3, 1]);
        assert_eq!(&quadratic - &linear, poly![7, 1, 1]);
        assert_eq!(&quadratic * &linear, poly![-6, -11, -4, 1]);
        quadratic -= &linear;
        assert_eq!(quadratic, poly![7, 1, 1]);
        quadratic += &linear;
        assert_eq!(quadratic, poly![1, 2, 1]);
        quadratic *= &linear;
        assert_eq!(quadratic, poly![-6, -11, -4, 1]);
        assert_eq!(quadratic.derivative(), poly![-11, -8, 3]);
        let mut another = poly![1, 3, 3, 1]; // x^3 + 3x^2 + 3x + 1
        let pair = poly![-5, 4, 2]; // 2x^2 + 4x - 5
        assert_eq!(&another + &pair, poly![-4, 7, 5, 1]);
        assert_eq!(&another - &pair, poly![6, -1, 1, 1]);
        assert_eq!(&another * &pair, poly![-5, -11, -1, 13, 10, 2]);
        another -= &pair;
        assert_eq!(another, poly![6, -1, 1, 1]);
        another += &pair;
        assert_eq!(another, poly![1, 3, 3, 1]);
        another *= &pair;
        assert_eq!(another, poly![-5, -11, -1, 13, 10, 2]);
        assert_eq!(another.derivative(), poly![-11, -2, 39, 40, 10]);
    }
}