1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#[macro_export]
macro_rules! npn {
    // base cases
    [() -> ()] => {};
    [() -> ($stack:tt)] => {$stack};

    // whenever there is an operator as the next token, always push it onto the stack
    [(+ $($tail:tt)*) -> ($($stack:tt)*)] => { npn!(($($tail)*) -> (+ $($stack)*)) };
    [(- $($tail:tt)*) -> ($($stack:tt)*)] => { npn!(($($tail)*) -> (- $($stack)*)) };
    [(* $($tail:tt)*) -> ($($stack:tt)*)] => { npn!(($($tail)*) -> (* $($stack)*)) };
    [(/ $($tail:tt)*) -> ($($stack:tt)*)] => { npn!(($($tail)*) -> (/ $($stack)*)) };

    // whenever the operator is at the top of the stack, always push the next token, since an
    // operator needs at least two values to work
    [($head:tt $($tail:tt)*) -> (+ $($stack:tt)*)] => { npn!(($($tail)*) -> ($head + $($stack)*)) };
    [($head:tt $($tail:tt)*) -> (- $($stack:tt)*)] => { npn!(($($tail)*) -> ($head - $($stack)*)) };
    [($head:tt $($tail:tt)*) -> (* $($stack:tt)*)] => { npn!(($($tail)*) -> ($head * $($stack)*)) };
    [($head:tt $($tail:tt)*) -> (/ $($stack:tt)*)] => { npn!(($($tail)*) -> ($head / $($stack)*)) };

    // if we've gotten to here, we know that the first element on the stack isn't an operator and
    // neither is the next token, so we can safely produce an expresion from the next token and
    // top two elements on the stack and push it back onto the stack
    [($head:tt $($tail:tt)*) -> ($stack_head:tt + $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_head + $head) $($stack)*)) };
    [($head:tt $($tail:tt)*) -> ($stack_head:tt - $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_head - $head) $($stack)*)) };
    [($head:tt $($tail:tt)*) -> ($stack_head:tt * $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_head * $head) $($stack)*)) };
    [($head:tt $($tail:tt)*) -> ($stack_head:tt / $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_head / $head) $($stack)*)) };

    // sometimes the above rules fail to apply, usually in the case where an expression is placed
    // onto the stack by one of the last 4 rules, meaning that the top 3 elements on the stack may
    // be an expression that can be resolved.
    [($($tail:tt)*) -> ($stack_first:tt $stack_second:tt + $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_second + $stack_first) $($stack)*)) };
    [($($tail:tt)*) -> ($stack_first:tt $stack_second:tt - $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_second - $stack_first) $($stack)*)) };
    [($($tail:tt)*) -> ($stack_first:tt $stack_second:tt * $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_second * $stack_first) $($stack)*)) };
    [($($tail:tt)*) -> ($stack_first:tt $stack_second:tt / $($stack:tt)*)] => { npn!(($($tail)*) -> (($stack_second / $stack_first) $($stack)*)) };

    // this is the initialization step
    [$first:tt $second:tt $($tail:tt)*] => { npn!(($($tail)*) -> ($second $first)) };
}

#[cfg(test)]
mod npn_tests {
    #[test]
    fn basic_add() { assert_eq!(npn!(+ 1 2), 3); }
    #[test]
    fn double_add() { assert_eq!(npn!(+ + 1 2 3), 6); }
    #[test]
    fn lots_of_add() {
        // any more than this and we hit the macro recursion limit
        assert_eq!(npn!(+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32), 528);
    }

    #[test]
    fn basic_subtract() { assert_eq!(npn!(- 1 2), -1); }
    #[test]
    fn double_subtract() { assert_eq!(npn!(- - 5 2 4), -1); }

    #[test]
    fn subtract_and_add() { assert_eq!(npn!(- + 1 2 3), 0); }
    #[test]
    fn add_and_subtract() { assert_eq!(npn!(+ - 1 2 3), 2); }
    #[test]
    fn adds_and_subtracts() { assert_eq!(npn!(+ - - + 1 2 - 3 + 4 5 6 7), 10); }


    #[test]
    fn basic_multiply() { assert_eq!(npn!(* 3 2), 6); }
    #[test]
    fn double_multiply() { assert_eq!(npn!(* 3 * 2 3), 18); }

    #[test]
    fn adds_substracts_and_multiplies_oh_my() { assert_eq!(npn!(* - - * * + + * * * 2 3 2 3 2 3 2 3 2 3 2), 482); }

    #[test]
    fn basic_divide() { assert_eq!(npn!(/ 8 4), 2); }
    #[test]
    fn double_divide() { assert_eq!(npn!(/ 24 / 12 4), 8); }

    #[test]
    fn all_division_pairs() {
        assert_eq!(npn!(/ + / - / * / / +  - / * / 128 2 4 2 64 192 4 2 4 2 32 2 16 8), 4);
    }

    #[test]
    fn wikipedia_tests() {
        assert_eq!(npn!(* - 5 6 7), -7);
        assert_eq!(npn!(- * / 15 - 7 + 1 1 3 + 2 + 1 1), 5);
    }

    #[test]
    fn test_with_non_numbers() {
        let foo = 3;
        let bar = 12;
        assert_eq!(npn!(/ bar foo), 4);

        fn baz() -> i64 { 2 }
        // TODO figure out how to do this without parens
        assert_eq!(npn!(/ bar (baz())), 6);

        // TODO figure out how to do this without parens
        assert_eq!(npn!(+ foo (-3)), 0);
    }
}

#[macro_export]
macro_rules! rpn {
    // base cases
    [() -> ()] => {};
    [() -> ($stack:tt)] => {$stack};

    // if we encounter an operator, take the last two expressions off the stack, and evaluate.
    [(+ $($tail:tt)*) -> ($stack_first:tt $stack_second:tt $($stack:tt)*)] => { rpn!(($($tail)*) -> (($stack_second + $stack_first) $($stack)*)) };
    [(- $($tail:tt)*) -> ($stack_first:tt $stack_second:tt $($stack:tt)*)] => { rpn!(($($tail)*) -> (($stack_second - $stack_first) $($stack)*)) };
    [(* $($tail:tt)*) -> ($stack_first:tt $stack_second:tt $($stack:tt)*)] => { rpn!(($($tail)*) -> (($stack_second * $stack_first) $($stack)*)) };
    [(/ $($tail:tt)*) -> ($stack_first:tt $stack_second:tt $($stack:tt)*)] => { rpn!(($($tail)*) -> (($stack_second / $stack_first) $($stack)*)) };

    // if this is non-operator (a value), push onto the stack
    [($head:tt $($tail:tt)*) -> ($($stack:tt)*)] => { rpn!(($($tail)*) -> ($head $($stack)*)) };

    // this is the initialization step
    [$first:tt $second:tt $($tail:tt)*] => { rpn!(($($tail)*) -> ($second $first)) };
}

#[cfg(test)]
mod rpn_tests {
    #[test]
    fn basic_add() { assert_eq!(rpn!(1 2 +), 3); }
    #[test]
    fn double_add() { assert_eq!(rpn!(1 2 + 3 +), 6); }

    #[test]
    fn basic_subtract() { assert_eq!(rpn!(1 2 -), -1); }
    #[test]
    fn double_subtract() { assert_eq!(rpn!(5 2 - 4 -), -1); }

    #[test]
    fn basic_multiply() { assert_eq!(rpn!(3 2 *), 6); }
    #[test]
    fn double_multiply() { assert_eq!(rpn!(3 2 * 3 *), 18); }

    #[test]
    fn basic_divide() { assert_eq!(rpn!(8 4 /), 2); }
    #[test]
    fn double_divide() { assert_eq!(rpn!(24 12 4 / /), 8); }

    #[test]
    fn all_operators() {
        assert_eq!(rpn!(2 3 + 5 * 15 - 5 /), 2);
    }

    #[test]
    fn wikipedia_tests() {
        assert_eq!(rpn!(15 7 1 1 + - / 3 * 2 1 1 + + -), 5);
    }

    #[test]
    fn test_with_non_numbers() {
        let foo = 3;
        let bar = 12;
        assert_eq!(rpn!(bar foo /), 4);

        fn baz() -> i64 { 2 }
        // TODO figure out how to do this without parens
        assert_eq!(rpn!(bar (baz()) /), 6);

        // TODO figure out how to do this without parens
        assert_eq!(rpn!(foo (-3) +), 0);
    }
}