1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
//! Traits for miscellaneous operations on ChunkedArray
#[cfg(feature = "object")]
use crate::chunked_array::object::ObjectType;
use crate::prelude::*;
use crate::utils::Xob;
use arrow::array::ArrayRef;
use itertools::Itertools;
use std::cmp::Ordering;
use std::marker::Sized;

pub(crate) mod aggregate;
pub(crate) mod apply;
pub(crate) mod chunkops;
pub(crate) mod fill_none;
pub(crate) mod filter;
pub(crate) mod set;
pub(crate) mod shift;
pub(crate) mod take;
pub(crate) mod unique;
pub(crate) mod window;
pub(crate) mod zip;

pub trait ChunkBytes {
    fn to_byte_slices(&self) -> Vec<&[u8]>;
}

pub trait ChunkWindow {
    /// Apply a rolling sum (moving sum) over the values in this array.
    /// A window of length `window_size` will traverse the array. The values that fill this window
    /// will (optionally) be multiplied with the weights given by the `weight` vector. The resulting
    /// values will be aggregated to their sum.
    ///
    /// # Arguments
    ///
    /// * `window_size` - The length of the window.
    /// * `weight` - An optional slice with the same length of the window that will be multiplied
    ///              elementwise with the values in the window.
    /// * `ignore_null` - Toggle behavior of aggregation regarding null values in the window.
    ///                     `true` -> Null values will be ignored.
    ///                     `false` -> Any Null in the window leads to a Null in the aggregation result.
    fn rolling_sum(
        &self,
        _window_size: usize,
        _weight: Option<&[f64]>,
        _ignore_null: bool,
    ) -> Result<Self>
    where
        Self: std::marker::Sized,
    {
        Err(PolarsError::InvalidOperation(
            "rolling sum not supported for this datatype".into(),
        ))
    }
    /// Apply a rolling mean (moving mean) over the values in this array.
    /// A window of length `window_size` will traverse the array. The values that fill this window
    /// will (optionally) be multiplied with the weights given by the `weight` vector. The resulting
    /// values will be aggregated to their mean.
    ///
    /// # Arguments
    ///
    /// * `window_size` - The length of the window.
    /// * `weight` - An optional slice with the same length of the window that will be multiplied
    ///              elementwise with the values in the window.
    /// * `ignore_null` - Toggle behavior of aggregation regarding null values in the window.
    ///                     `true` -> Null values will be ignored.
    ///                     `false` -> Any Null in the window leads to a Null in the aggregation result.
    fn rolling_mean(
        &self,
        _window_size: usize,
        _weight: Option<&[f64]>,
        _ignore_null: bool,
    ) -> Result<Self>
    where
        Self: std::marker::Sized,
    {
        Err(PolarsError::InvalidOperation(
            "rolling mean not supported for this datatype".into(),
        ))
    }

    /// Apply a rolling min (moving min) over the values in this array.
    /// A window of length `window_size` will traverse the array. The values that fill this window
    /// will (optionally) be multiplied with the weights given by the `weight` vector. The resulting
    /// values will be aggregated to their min.
    ///
    /// # Arguments
    ///
    /// * `window_size` - The length of the window.
    /// * `weight` - An optional slice with the same length of the window that will be multiplied
    ///              elementwise with the values in the window.
    /// * `ignore_null` - Toggle behavior of aggregation regarding null values in the window.
    ///                     `true` -> Null values will be ignored.
    ///                     `false` -> Any Null in the window leads to a Null in the aggregation result.
    fn rolling_min(
        &self,
        _window_size: usize,
        _weight: Option<&[f64]>,
        _ignore_null: bool,
    ) -> Result<Self>
    where
        Self: std::marker::Sized,
    {
        Err(PolarsError::InvalidOperation(
            "rolling mean not supported for this datatype".into(),
        ))
    }

    /// Apply a rolling max (moving max) over the values in this array.
    /// A window of length `window_size` will traverse the array. The values that fill this window
    /// will (optionally) be multiplied with the weights given by the `weight` vector. The resulting
    /// values will be aggregated to their max.
    ///
    /// # Arguments
    ///
    /// * `window_size` - The length of the window.
    /// * `weight` - An optional slice with the same length of the window that will be multiplied
    ///              elementwise with the values in the window.
    /// * `ignore_null` - Toggle behavior of aggregation regarding null values in the window.
    ///                     `true` -> Null values will be ignored.
    ///                     `false` -> Any Null in the window leads to a Null in the aggregation result.
    fn rolling_max(
        &self,
        _window_size: usize,
        _weight: Option<&[f64]>,
        _ignore_null: bool,
    ) -> Result<Self>
    where
        Self: std::marker::Sized,
    {
        Err(PolarsError::InvalidOperation(
            "rolling mean not supported for this datatype".into(),
        ))
    }
}

pub trait ChunkWindowCustom<T> {
    /// Apply a rolling aggregation over the values in this array.
    ///
    /// A window of length `window_size` will traverse the array. The values that fill this window
    /// will (optionally) be multiplied with the weights given by the `weight` vector. The resulting
    /// values will be aggregated to their max.
    ///
    /// You can pass a custom closure that will be used in the `fold` operation to aggregate the window.
    /// The closure/fn of type `Fn(Option<T>, Option<T>) -> Option<T>` takes an `accumulator` and
    /// a `value` as argument.
    ///
    /// # Arguments
    ///
    /// * `window_size` - The length of the window.
    /// * `weight` - An optional slice with the same length of the window that will be multiplied
    ///              elementwise with the values in the window.
    fn rolling_custom<F>(
        &self,
        _window_size: usize,
        _weight: Option<&[f64]>,
        _fold_fn: F,
        _init_fold: InitFold,
    ) -> Result<Self>
    where
        F: Fn(Option<T>, Option<T>) -> Option<T> + Copy,
        Self: std::marker::Sized,
    {
        Err(PolarsError::InvalidOperation(
            "rolling mean not supported for this datatype".into(),
        ))
    }
}

/// Random access
pub trait TakeRandom {
    type Item;

    /// Get a nullable value by index.
    ///
    /// # Safety
    ///
    /// Out of bounds access doesn't Error but will return a Null value
    fn get(&self, index: usize) -> Option<Self::Item>;

    /// Get a value by index and ignore the null bit.
    ///
    /// # Safety
    ///
    /// This doesn't check if the underlying type is null or not and may return an uninitialized value.
    unsafe fn get_unchecked(&self, index: usize) -> Self::Item;
}
// Utility trait because associated type needs a lifetime
pub trait TakeRandomUtf8 {
    type Item;

    /// Get a nullable value by index.
    ///
    /// # Safety
    ///
    /// Out of bounds access doesn't Error but will return a Null value
    fn get(self, index: usize) -> Option<Self::Item>;

    /// Get a value by index and ignore the null bit.
    ///
    /// # Safety
    /// This doesn't check if the underlying type is null or not and may return an uninitialized value.
    unsafe fn get_unchecked(self, index: usize) -> Self::Item;
}

/// Fast access by index.
pub trait ChunkTake {
    /// Take values from ChunkedArray by index.
    ///
    /// # Safety
    ///
    /// Out of bounds access doesn't Error but will return a Null value
    fn take(&self, indices: impl Iterator<Item = usize>, capacity: Option<usize>) -> Self
    where
        Self: std::marker::Sized;

    /// Take values from ChunkedArray by index
    ///
    /// # Safety
    ///
    /// Runs without checking bounds or null validity.
    unsafe fn take_unchecked(
        &self,
        indices: impl Iterator<Item = usize>,
        capacity: Option<usize>,
    ) -> Self
    where
        Self: std::marker::Sized;

    /// Take values from ChunkedArray by Option<index>.
    ///
    /// # Safety
    ///
    /// Out of bounds access doesn't Error but will return a Null value
    fn take_opt(
        &self,
        indices: impl Iterator<Item = Option<usize>>,
        capacity: Option<usize>,
    ) -> Self
    where
        Self: std::marker::Sized;

    /// Take values from ChunkedArray by Option<index>.
    ///
    /// # Safety
    ///
    /// Doesn't do any bound or null validity checking.
    unsafe fn take_opt_unchecked(
        &self,
        indices: impl Iterator<Item = Option<usize>>,
        capacity: Option<usize>,
    ) -> Self
    where
        Self: std::marker::Sized;

    fn take_from_single_chunked(&self, idx: &UInt32Chunked) -> Result<Self>
    where
        Self: std::marker::Sized;

    fn take_from_single_chunked_iter(&self, indices: impl Iterator<Item = usize>) -> Result<Self>
    where
        Self: std::marker::Sized,
    {
        let idx_ca: Xob<UInt32Chunked> = indices.into_iter().map(|idx| idx as u32).collect();
        let idx_ca = idx_ca.into_inner();
        self.take_from_single_chunked(&idx_ca)
    }
}

/// Create a `ChunkedArray` with new values by index or by boolean mask.
/// Note that these operations clone data. This is however the only way we can modify at mask or
/// index level as the underlying Arrow arrays are immutable.
pub trait ChunkSet<'a, A, B> {
    /// Set the values at indexes `idx` to some optional value `Option<T>`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars::prelude::*;
    /// let ca = Int32Chunked::new_from_slice("a", &[1, 2, 3]);
    /// let new = ca.set_at_idx(&[0, 1], Some(10)).unwrap();
    ///
    /// assert_eq!(Vec::from(&new), &[Some(10), Some(10), Some(3)]);
    /// ```
    fn set_at_idx<T: AsTakeIndex>(&'a self, idx: &T, opt_value: Option<A>) -> Result<Self>
    where
        Self: Sized;

    /// Set the values at indexes `idx` by applying a closure to these values.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars::prelude::*;
    /// let ca = Int32Chunked::new_from_slice("a", &[1, 2, 3]);
    /// let new = ca.set_at_idx_with(&[0, 1], |opt_v| opt_v.map(|v| v - 5)).unwrap();
    ///
    /// assert_eq!(Vec::from(&new), &[Some(-4), Some(-3), Some(3)]);
    /// ```
    fn set_at_idx_with<T: AsTakeIndex, F>(&'a self, idx: &T, f: F) -> Result<Self>
    where
        Self: Sized,
        F: Fn(Option<A>) -> Option<B>;
    /// Set the values where the mask evaluates to `true` to some optional value `Option<T>`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars::prelude::*;
    /// let ca = Int32Chunked::new_from_slice("a", &[1, 2, 3]);
    /// let mask = BooleanChunked::new_from_slice("mask", &[false, true, false]);
    /// let new = ca.set(&mask, Some(5)).unwrap();
    /// assert_eq!(Vec::from(&new), &[Some(1), Some(5), Some(3)]);
    /// ```
    fn set(&'a self, mask: &BooleanChunked, opt_value: Option<A>) -> Result<Self>
    where
        Self: Sized;

    /// Set the values where the mask evaluates to `true` by applying a closure to these values.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars::prelude::*;
    /// let ca = Int32Chunked::new_from_slice("a", &[1, 2, 3]);
    /// let mask = BooleanChunked::new_from_slice("mask", &[false, true, false]);
    /// let new = ca.set_with(&mask, |opt_v| opt_v.map(
    ///     |v| v * 2
    /// )).unwrap();
    /// assert_eq!(Vec::from(&new), &[Some(1), Some(4), Some(3)]);
    /// ```
    fn set_with<F>(&'a self, mask: &BooleanChunked, f: F) -> Result<Self>
    where
        Self: Sized,
        F: Fn(Option<A>) -> Option<B>;
}

/// Cast `ChunkedArray<T>` to `ChunkedArray<N>`
pub trait ChunkCast {
    /// Cast `ChunkedArray<T>` to `ChunkedArray<N>`
    fn cast<N>(&self) -> Result<ChunkedArray<N>>
    where
        N: PolarsDataType;
}

/// Fastest way to do elementwise operations on a ChunkedArray<T>
pub trait ChunkApply<'a, A, B> {
    /// Apply a closure `F` elementwise.
    fn apply<F>(&'a self, f: F) -> Self
    where
        F: Fn(A) -> B + Copy;

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, A)) -> B + Copy;

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx_on_opt<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, Option<A>)) -> Option<B> + Copy;
}

/// Aggregation operations
pub trait ChunkAgg<T> {
    /// Aggregate the sum of the ChunkedArray.
    /// Returns `None` if the array is empty or only contains null values.
    fn sum(&self) -> Option<T>;

    fn min(&self) -> Option<T>;
    /// Returns the maximum value in the array, according to the natural order.
    /// Returns `None` if the array is empty or only contains null values.
    fn max(&self) -> Option<T>;

    /// Returns the mean value in the array.
    /// Returns `None` if the array is empty or only contains null values.
    fn mean(&self) -> Option<T>;

    /// Returns the mean value in the array.
    /// Returns `None` if the array is empty or only contains null values.
    fn median(&self) -> Option<T>;

    /// Aggregate a given quantile of the ChunkedArray.
    /// Returns `None` if the array is empty or only contains null values.
    fn quantile(&self, quantile: f64) -> Result<Option<T>>;
}

/// Variance and standard deviation aggregation.
pub trait ChunkVar<T> {
    /// Compute the variance of this ChunkedArray/Series.
    fn var(&self) -> Option<T> {
        None
    }

    /// Compute the standard deviation of this ChunkedArray/Series.
    fn std(&self) -> Option<T> {
        None
    }
}

/// Compare [Series](series/series/enum.Series.html)
/// and [ChunkedArray](series/chunked_array/struct.ChunkedArray.html)'s and get a `boolean` mask that
/// can be used to filter rows.
///
/// # Example
///
/// ```
/// use polars::prelude::*;
/// fn filter_all_ones(df: &DataFrame) -> Result<DataFrame> {
///     let mask = df
///     .column("column_a")?
///     .eq(1);
///
///     df.filter(&mask)
/// }
/// ```
pub trait ChunkCompare<Rhs> {
    /// Check for equality and regard missing values as equal.
    fn eq_missing(&self, rhs: Rhs) -> BooleanChunked;

    /// Check for equality.
    fn eq(&self, rhs: Rhs) -> BooleanChunked;

    /// Check for inequality.
    fn neq(&self, rhs: Rhs) -> BooleanChunked;

    /// Greater than comparison.
    fn gt(&self, rhs: Rhs) -> BooleanChunked;

    /// Greater than or equal comparison.
    fn gt_eq(&self, rhs: Rhs) -> BooleanChunked;

    /// Less than comparison.
    fn lt(&self, rhs: Rhs) -> BooleanChunked;

    /// Less than or equal comparison
    fn lt_eq(&self, rhs: Rhs) -> BooleanChunked;
}

/// Get unique values in a `ChunkedArray`
pub trait ChunkUnique<T> {
    // We don't return Self to be able to use AutoRef specialization
    /// Get unique values of a ChunkedArray
    fn unique(&self) -> Result<ChunkedArray<T>>;

    /// Get first index of the unique values in a `ChunkedArray`.
    /// This Vec is sorted.
    fn arg_unique(&self) -> Result<Vec<usize>>;

    /// Number of unique values in the `ChunkedArray`
    fn n_unique(&self) -> Result<usize> {
        self.arg_unique().map(|v| v.len())
    }

    /// Get a mask of all the unique values.
    fn is_unique(&self) -> Result<BooleanChunked> {
        Err(PolarsError::InvalidOperation(
            "is_unique is not implemented for this dtype".into(),
        ))
    }

    /// Get a mask of all the duplicated values.
    fn is_duplicated(&self) -> Result<BooleanChunked> {
        Err(PolarsError::InvalidOperation(
            "is_duplicated is not implemented for this dtype".into(),
        ))
    }

    /// Count the unique values.
    fn value_counts(&self) -> Result<DataFrame> {
        Err(PolarsError::InvalidOperation(
            "is_duplicated is not implemented for this dtype".into(),
        ))
    }
}

pub trait ToDummies<T>: ChunkUnique<T> {
    fn to_dummies(&self) -> Result<DataFrame> {
        Err(PolarsError::InvalidOperation(
            "is_duplicated is not implemented for this dtype".into(),
        ))
    }
}

/// Sort operations on `ChunkedArray`.
pub trait ChunkSort<T> {
    /// Returned a sorted `ChunkedArray`.
    fn sort(&self, reverse: bool) -> ChunkedArray<T>;

    /// Sort this array in place.
    fn sort_in_place(&mut self, reverse: bool);

    /// Retrieve the indexes needed to sort this array.
    fn argsort(&self, reverse: bool) -> Vec<usize>;
}

fn sort_partial<T: PartialOrd>(a: &Option<T>, b: &Option<T>) -> Ordering {
    match (a, b) {
        (Some(a), Some(b)) => a.partial_cmp(b).expect("could not compare"),
        (None, Some(_)) => Ordering::Less,
        (Some(_), None) => Ordering::Greater,
        (None, None) => Ordering::Equal,
    }
}

impl<T> ChunkSort<T> for ChunkedArray<T>
where
    T: PolarsNumericType,
    T::Native: std::cmp::PartialOrd,
{
    fn sort(&self, reverse: bool) -> ChunkedArray<T> {
        if reverse {
            self.into_iter()
                .sorted_by(|a, b| sort_partial(b, a))
                .collect()
        } else {
            self.into_iter()
                .sorted_by(|a, b| sort_partial(a, b))
                .collect()
        }
    }

    fn sort_in_place(&mut self, reverse: bool) {
        let sorted = self.sort(reverse);
        self.chunks = sorted.chunks;
    }

    fn argsort(&self, reverse: bool) -> Vec<usize> {
        if reverse {
            self.into_iter()
                .enumerate()
                .sorted_by(|(_idx_a, a), (_idx_b, b)| sort_partial(b, a))
                .map(|(idx, _v)| idx)
                .collect()
        } else {
            self.into_iter()
                .enumerate()
                .sorted_by(|(_idx_a, a), (_idx_b, b)| sort_partial(a, b))
                .map(|(idx, _v)| idx)
                .collect()
        }
    }
}

macro_rules! argsort {
    ($self:ident, $closure:expr) => {{
        $self
            .into_iter()
            .enumerate()
            .sorted_by($closure)
            .map(|(idx, _v)| idx)
            .collect()
    }};
}

macro_rules! sort {
    ($self:ident, $reverse:ident) => {{
        if $reverse {
            $self.into_iter().sorted_by(|a, b| b.cmp(a)).collect()
        } else {
            $self.into_iter().sorted_by(|a, b| a.cmp(b)).collect()
        }
    }};
}

impl ChunkSort<Utf8Type> for Utf8Chunked {
    fn sort(&self, reverse: bool) -> Utf8Chunked {
        sort!(self, reverse)
    }

    fn sort_in_place(&mut self, reverse: bool) {
        let sorted = self.sort(reverse);
        self.chunks = sorted.chunks;
    }

    fn argsort(&self, reverse: bool) -> Vec<usize> {
        if reverse {
            argsort!(self, |(_idx_a, a), (_idx_b, b)| b.cmp(a))
        } else {
            argsort!(self, |(_idx_a, a), (_idx_b, b)| a.cmp(b))
        }
    }
}

// TODO! return errors
impl ChunkSort<ListType> for ListChunked {
    fn sort(&self, _reverse: bool) -> Self {
        println!("A ListChunked cannot be sorted. Doing nothing");
        self.clone()
    }

    fn sort_in_place(&mut self, _reverse: bool) {
        println!("A ListChunked cannot be sorted. Doing nothing");
    }

    fn argsort(&self, _reverse: bool) -> Vec<usize> {
        println!("A ListChunked cannot be sorted. Doing nothing");
        (0..self.len()).collect()
    }
}

#[cfg(feature = "object")]
impl<T> ChunkSort<ObjectType<T>> for ObjectChunked<T> {
    fn sort(&self, _reverse: bool) -> Self {
        println!("An object cannot be sorted. Doing nothing");
        self.clone()
    }

    fn sort_in_place(&mut self, _reverse: bool) {
        println!("An object cannot be sorted. Doing nothing");
    }

    fn argsort(&self, _reverse: bool) -> Vec<usize> {
        println!("An object cannot be sorted. Doing nothing");
        (0..self.len()).collect()
    }
}

impl ChunkSort<BooleanType> for BooleanChunked {
    fn sort(&self, reverse: bool) -> BooleanChunked {
        sort!(self, reverse)
    }

    fn sort_in_place(&mut self, reverse: bool) {
        let sorted = self.sort(reverse);
        self.chunks = sorted.chunks;
    }

    fn argsort(&self, reverse: bool) -> Vec<usize> {
        if reverse {
            argsort!(self, |(_idx_a, a), (_idx_b, b)| b.cmp(a))
        } else {
            argsort!(self, |(_idx_a, a), (_idx_b, b)| a.cmp(b))
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub enum FillNoneStrategy {
    Backward,
    Forward,
    Mean,
    Min,
    Max,
}

/// Replace None values with various strategies
pub trait ChunkFillNone {
    /// Replace None values with one of the following strategies:
    /// * Forward fill (replace None with the previous value)
    /// * Backward fill (replace None with the next value)
    /// * Mean fill (replace None with the mean of the whole array)
    /// * Min fill (replace None with the minimum of the whole array)
    /// * Max fill (replace None with the maximum of the whole array)
    fn fill_none(&self, strategy: FillNoneStrategy) -> Result<Self>
    where
        Self: Sized;
}
/// Replace None values with a value
pub trait ChunkFillNoneValue<T> {
    /// Replace None values with a give value `T`.
    fn fill_none_with_value(&self, value: T) -> Result<Self>
    where
        Self: Sized;
}

/// Fill a ChunkedArray with one value.
pub trait ChunkFull<T> {
    /// Create a ChunkedArray with a single value.
    fn full(name: &str, value: T, length: usize) -> Self
    where
        Self: std::marker::Sized;

    fn full_null(_name: &str, _length: usize) -> Self
    where
        Self: std::marker::Sized;
}

impl<T> ChunkFull<T::Native> for ChunkedArray<T>
where
    T: PolarsPrimitiveType,
{
    fn full(name: &str, value: T::Native, length: usize) -> Self
    where
        T::Native: Copy,
    {
        let mut builder = PrimitiveChunkedBuilder::new(name, length);

        for _ in 0..length {
            builder.append_value(value)
        }
        builder.finish()
    }

    fn full_null(name: &str, length: usize) -> Self {
        let mut builder = PrimitiveChunkedBuilder::new(name, length);

        // todo: faster with null arrays or in one go allocation
        for _ in 0..length {
            builder.append_null()
        }
        builder.finish()
    }
}

impl<'a> ChunkFull<&'a str> for Utf8Chunked {
    fn full(name: &str, value: &'a str, length: usize) -> Self {
        let mut builder = Utf8ChunkedBuilder::new(name, length);

        for _ in 0..length {
            builder.append_value(value);
        }
        builder.finish()
    }

    fn full_null(name: &str, length: usize) -> Self {
        // todo: faster with null arrays or in one go allocation
        let mut builder = Utf8ChunkedBuilder::new(name, length);

        for _ in 0..length {
            builder.append_null()
        }
        builder.finish()
    }
}

impl ChunkFull<&dyn SeriesTrait> for ListChunked {
    fn full(_name: &str, _value: &dyn SeriesTrait, _length: usize) -> ListChunked {
        unimplemented!()
    }

    fn full_null(_name: &str, _length: usize) -> ListChunked {
        unimplemented!()
    }
}

/// Reverse a ChunkedArray<T>
pub trait ChunkReverse<T> {
    /// Return a reversed version of this array.
    fn reverse(&self) -> ChunkedArray<T>;
}

impl<T> ChunkReverse<T> for ChunkedArray<T>
where
    T: PolarsNumericType,
    ChunkedArray<T>: ChunkOps,
{
    fn reverse(&self) -> ChunkedArray<T> {
        if let Ok(slice) = self.cont_slice() {
            let ca: Xob<ChunkedArray<T>> = slice.iter().rev().copied().collect();
            let mut ca = ca.into_inner();
            ca.rename(self.name());
            ca
        } else {
            self.take((0..self.len()).rev(), None)
        }
    }
}

macro_rules! impl_reverse {
    ($arrow_type:ident, $ca_type:ident) => {
        impl ChunkReverse<$arrow_type> for $ca_type {
            fn reverse(&self) -> Self {
                self.take((0..self.len()).rev(), None)
            }
        }
    };
}

impl_reverse!(BooleanType, BooleanChunked);
impl_reverse!(Utf8Type, Utf8Chunked);
impl_reverse!(ListType, ListChunked);
#[cfg(feature = "object")]
impl<T> ChunkReverse<ObjectType<T>> for ObjectChunked<T> {
    fn reverse(&self) -> Self {
        self.take((0..self.len()).rev(), None)
    }
}

/// Filter values by a boolean mask.
pub trait ChunkFilter<T> {
    /// Filter values in the ChunkedArray with a boolean mask.
    ///
    /// ```rust
    /// # use polars::prelude::*;
    /// let array = Int32Chunked::new_from_slice("array", &[1, 2, 3]);
    /// let mask = BooleanChunked::new_from_slice("mask", &[true, false, true]);
    ///
    /// let filtered = array.filter(&mask).unwrap();
    /// assert_eq!(Vec::from(&filtered), [Some(1), Some(3)])
    /// ```
    fn filter(&self, filter: &BooleanChunked) -> Result<ChunkedArray<T>>
    where
        Self: Sized;
}

/// Create a new ChunkedArray filled with values at that index.
pub trait ChunkExpandAtIndex<T> {
    /// Create a new ChunkedArray filled with values at that index.
    fn expand_at_index(&self, length: usize, index: usize) -> ChunkedArray<T>;
}

macro_rules! impl_chunk_expand {
    ($self:ident, $length:ident, $index:ident) => {{
        let opt_val = $self.get($index);
        match opt_val {
            Some(val) => ChunkedArray::full($self.name(), val, $length),
            None => ChunkedArray::full_null($self.name(), $length),
        }
    }};
}

impl<T> ChunkExpandAtIndex<T> for ChunkedArray<T>
where
    ChunkedArray<T>: ChunkFull<T::Native> + TakeRandom<Item = T::Native>,
    T: PolarsPrimitiveType,
{
    fn expand_at_index(&self, index: usize, length: usize) -> ChunkedArray<T> {
        impl_chunk_expand!(self, length, index)
    }
}

impl ChunkExpandAtIndex<Utf8Type> for Utf8Chunked {
    fn expand_at_index(&self, index: usize, length: usize) -> Utf8Chunked {
        impl_chunk_expand!(self, length, index)
    }
}

impl ChunkExpandAtIndex<ListType> for ListChunked {
    fn expand_at_index(&self, _index: usize, _length: usize) -> ListChunked {
        unimplemented!()
    }
}

#[cfg(feature = "object")]
impl<T> ChunkExpandAtIndex<ObjectType<T>> for ObjectChunked<T> {
    fn expand_at_index(&self, _index: usize, _length: usize) -> ObjectChunked<T> {
        todo!()
    }
}

/// Shift the values of a ChunkedArray by a number of periods.
pub trait ChunkShiftFill<T, V> {
    /// Shift the values by a given period and fill the parts that will be empty due to this operation
    /// with `fill_value`.
    fn shift_and_fill(&self, periods: i32, fill_value: V) -> Result<ChunkedArray<T>>;
}

pub trait ChunkShift<T> {
    fn shift(&self, periods: i32) -> Result<ChunkedArray<T>>;
}

/// Combine 2 ChunkedArrays based on some predicate.
pub trait ChunkZip<T> {
    /// Create a new ChunkedArray with values from self where the mask evaluates `true` and values
    /// from `other` where the mask evaluates `false`
    fn zip_with(&self, mask: &BooleanChunked, other: &ChunkedArray<T>) -> Result<ChunkedArray<T>>;

    /// Create a new ChunkedArray with values from self where the mask evaluates `true` and values
    /// from `other` where the mask evaluates `false`
    fn zip_with_series(&self, mask: &BooleanChunked, other: &Series) -> Result<ChunkedArray<T>>;
}

/// Apply kernels on the arrow array chunks in a ChunkedArray.
pub trait ChunkApplyKernel<A> {
    /// Apply kernel and return result as a new ChunkedArray.
    fn apply_kernel<F>(&self, f: F) -> Self
    where
        F: Fn(&A) -> ArrayRef;
    fn apply_kernel_cast<F, S>(&self, f: F) -> ChunkedArray<S>
    where
        F: Fn(&A) -> ArrayRef,
        S: PolarsDataType;
}

#[cfg(test)]
mod test {
    use crate::prelude::*;

    #[test]
    fn test_shift() {
        let ca = Int32Chunked::new_from_slice("", &[1, 2, 3]);
        let shifted = ca.shift_and_fill(1, Some(0)).unwrap();
        assert_eq!(shifted.cont_slice().unwrap(), &[0, 1, 2]);
        let shifted = ca.shift_and_fill(1, None).unwrap();
        assert_eq!(Vec::from(&shifted), &[None, Some(1), Some(2)]);
        let shifted = ca.shift_and_fill(-1, None).unwrap();
        assert_eq!(Vec::from(&shifted), &[Some(2), Some(3), None]);
        assert!(ca.shift_and_fill(3, None).is_err());

        let s = Series::new("a", ["a", "b", "c"]);
        let shifted = s.shift(-1).unwrap();
        assert_eq!(
            Vec::from(shifted.utf8().unwrap()),
            &[Some("b"), Some("c"), None]
        );
    }

    #[test]
    fn test_fill_none() {
        let ca =
            Int32Chunked::new_from_opt_slice("", &[None, Some(2), Some(3), None, Some(4), None]);
        let filled = ca.fill_none(FillNoneStrategy::Forward).unwrap();
        assert_eq!(
            Vec::from(&filled),
            &[None, Some(2), Some(3), Some(3), Some(4), Some(4)]
        );
        let filled = ca.fill_none(FillNoneStrategy::Backward).unwrap();
        assert_eq!(
            Vec::from(&filled),
            &[Some(2), Some(2), Some(3), Some(4), Some(4), None]
        );
        let filled = ca.fill_none(FillNoneStrategy::Min).unwrap();
        assert_eq!(
            Vec::from(&filled),
            &[Some(2), Some(2), Some(3), Some(2), Some(4), Some(2)]
        );
        let filled = ca.fill_none_with_value(10).unwrap();
        assert_eq!(
            Vec::from(&filled),
            &[Some(10), Some(2), Some(3), Some(10), Some(4), Some(10)]
        );
        let filled = ca.fill_none(FillNoneStrategy::Mean).unwrap();
        assert_eq!(
            Vec::from(&filled),
            &[Some(3), Some(2), Some(3), Some(3), Some(4), Some(3)]
        );
        println!("{:?}", filled);
    }
}