1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
use arrow::bitmap::bitmask::BitMask;
use arrow::bitmap::Bitmap;
use arrow::compute::take::take_unchecked;
use polars_error::polars_ensure;
use polars_utils::index::check_bounds;

use crate::prelude::*;
use crate::series::IsSorted;

const BINARY_SEARCH_LIMIT: usize = 8;

pub fn check_bounds_nulls(idx: &PrimitiveArray<IdxSize>, len: IdxSize) -> PolarsResult<()> {
    let mask = BitMask::from_bitmap(idx.validity().unwrap());

    // We iterate in chunks to make the inner loop branch-free.
    for (block_idx, block) in idx.values().chunks(32).enumerate() {
        let mut in_bounds = 0;
        for (i, x) in block.iter().enumerate() {
            in_bounds |= ((*x < len) as u32) << i;
        }
        let m = mask.get_u32(32 * block_idx);
        polars_ensure!(m == m & in_bounds, ComputeError: "gather indices are out of bounds");
    }
    Ok(())
}

pub fn check_bounds_ca(indices: &IdxCa, len: IdxSize) -> PolarsResult<()> {
    let all_valid = indices.downcast_iter().all(|a| {
        if a.null_count() == 0 {
            check_bounds(a.values(), len).is_ok()
        } else {
            check_bounds_nulls(a, len).is_ok()
        }
    });
    polars_ensure!(all_valid, OutOfBounds: "gather indices are out of bounds");
    Ok(())
}

impl<T: PolarsDataType, I: AsRef<[IdxSize]> + ?Sized> ChunkTake<I> for ChunkedArray<T>
where
    ChunkedArray<T>: ChunkTakeUnchecked<I>,
{
    /// Gather values from ChunkedArray by index.
    fn take(&self, indices: &I) -> PolarsResult<Self> {
        check_bounds(indices.as_ref(), self.len() as IdxSize)?;

        // SAFETY: we just checked the indices are valid.
        Ok(unsafe { self.take_unchecked(indices) })
    }
}

impl<T: PolarsDataType> ChunkTake<IdxCa> for ChunkedArray<T>
where
    ChunkedArray<T>: ChunkTakeUnchecked<IdxCa>,
{
    /// Gather values from ChunkedArray by index.
    fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
        check_bounds_ca(indices, self.len() as IdxSize)?;

        // SAFETY: we just checked the indices are valid.
        Ok(unsafe { self.take_unchecked(indices) })
    }
}

/// Computes cumulative lengths for efficient branchless binary search
/// lookup. The first element is always 0, and the last length of arrs
/// is always ignored (as we already checked that all indices are
/// in-bounds we don't need to check against the last length).
fn cumulative_lengths<A: StaticArray>(arrs: &[&A]) -> [IdxSize; BINARY_SEARCH_LIMIT] {
    assert!(arrs.len() <= BINARY_SEARCH_LIMIT);
    let mut ret = [IdxSize::MAX; BINARY_SEARCH_LIMIT];
    ret[0] = 0;
    for i in 1..arrs.len() {
        ret[i] = ret[i - 1] + arrs[i - 1].len() as IdxSize;
    }
    ret
}

#[rustfmt::skip]
#[inline]
fn resolve_chunked_idx(idx: IdxSize, cumlens: &[IdxSize; BINARY_SEARCH_LIMIT]) -> (usize, usize) {
    // Branchless bitwise binary search.
    let mut chunk_idx = 0;
    chunk_idx += if idx >= cumlens[chunk_idx + 0b100] { 0b0100 } else { 0 };
    chunk_idx += if idx >= cumlens[chunk_idx + 0b010] { 0b0010 } else { 0 };
    chunk_idx += if idx >= cumlens[chunk_idx + 0b001] { 0b0001 } else { 0 };
    (chunk_idx, (idx - cumlens[chunk_idx]) as usize)
}

#[inline]
unsafe fn target_value_unchecked<'a, A: StaticArray>(
    targets: &[&'a A],
    cumlens: &[IdxSize; BINARY_SEARCH_LIMIT],
    idx: IdxSize,
) -> A::ValueT<'a> {
    let (chunk_idx, arr_idx) = resolve_chunked_idx(idx, cumlens);
    let arr = targets.get_unchecked(chunk_idx);
    arr.value_unchecked(arr_idx)
}

#[inline]
unsafe fn target_get_unchecked<'a, A: StaticArray>(
    targets: &[&'a A],
    cumlens: &[IdxSize; BINARY_SEARCH_LIMIT],
    idx: IdxSize,
) -> Option<A::ValueT<'a>> {
    let (chunk_idx, arr_idx) = resolve_chunked_idx(idx, cumlens);
    let arr = targets.get_unchecked(chunk_idx);
    arr.get_unchecked(arr_idx)
}

unsafe fn gather_idx_array_unchecked<A: StaticArray>(
    dtype: ArrowDataType,
    targets: &[&A],
    has_nulls: bool,
    indices: &[IdxSize],
) -> A {
    let it = indices.iter().copied();
    if targets.len() == 1 {
        let target = targets.first().unwrap();
        if has_nulls {
            it.map(|i| target.get_unchecked(i as usize))
                .collect_arr_trusted_with_dtype(dtype)
        } else if let Some(sl) = target.as_slice() {
            // Avoid the Arc overhead from value_unchecked.
            it.map(|i| sl.get_unchecked(i as usize).clone())
                .collect_arr_trusted_with_dtype(dtype)
        } else {
            it.map(|i| target.value_unchecked(i as usize))
                .collect_arr_trusted_with_dtype(dtype)
        }
    } else {
        let cumlens = cumulative_lengths(targets);
        if has_nulls {
            it.map(|i| target_get_unchecked(targets, &cumlens, i))
                .collect_arr_trusted_with_dtype(dtype)
        } else {
            it.map(|i| target_value_unchecked(targets, &cumlens, i))
                .collect_arr_trusted_with_dtype(dtype)
        }
    }
}

impl<T: PolarsDataType, I: AsRef<[IdxSize]> + ?Sized> ChunkTakeUnchecked<I> for ChunkedArray<T> {
    /// Gather values from ChunkedArray by index.
    unsafe fn take_unchecked(&self, indices: &I) -> Self {
        let rechunked;
        let mut ca = self;
        if self.chunks().len() > BINARY_SEARCH_LIMIT {
            rechunked = self.rechunk();
            ca = &rechunked;
        }
        let targets: Vec<_> = ca.downcast_iter().collect();
        let arr = gather_idx_array_unchecked(
            ca.dtype().to_arrow(true),
            &targets,
            ca.null_count() > 0,
            indices.as_ref(),
        );
        ChunkedArray::from_chunk_iter_like(ca, [arr])
    }
}

trait NotSpecialized {}
impl NotSpecialized for Int8Type {}
impl NotSpecialized for Int16Type {}
impl NotSpecialized for Int32Type {}
impl NotSpecialized for Int64Type {}
#[cfg(feature = "dtype-decimal")]
impl NotSpecialized for Int128Type {}
impl NotSpecialized for UInt8Type {}
impl NotSpecialized for UInt16Type {}
impl NotSpecialized for UInt32Type {}
impl NotSpecialized for UInt64Type {}
impl NotSpecialized for Float32Type {}
impl NotSpecialized for Float64Type {}
impl NotSpecialized for BooleanType {}
impl NotSpecialized for ListType {}
#[cfg(feature = "dtype-array")]
impl NotSpecialized for FixedSizeListType {}
impl NotSpecialized for BinaryOffsetType {}
#[cfg(feature = "dtype-decimal")]
impl NotSpecialized for DecimalType {}
#[cfg(feature = "object")]
impl<T> NotSpecialized for ObjectType<T> {}

pub fn _update_gather_sorted_flag(sorted_arr: IsSorted, sorted_idx: IsSorted) -> IsSorted {
    use crate::series::IsSorted::*;
    match (sorted_arr, sorted_idx) {
        (_, Not) => Not,
        (Not, _) => Not,
        (Ascending, Ascending) => Ascending,
        (Ascending, Descending) => Descending,
        (Descending, Ascending) => Descending,
        (Descending, Descending) => Ascending,
    }
}

impl<T: PolarsDataType + NotSpecialized> ChunkTakeUnchecked<IdxCa> for ChunkedArray<T> {
    /// Gather values from ChunkedArray by index.
    unsafe fn take_unchecked(&self, indices: &IdxCa) -> Self {
        let rechunked;
        let mut ca = self;
        if self.chunks().len() > BINARY_SEARCH_LIMIT {
            rechunked = self.rechunk();
            ca = &rechunked;
        }
        let targets_have_nulls = ca.null_count() > 0;
        let targets: Vec<_> = ca.downcast_iter().collect();

        let chunks = indices.downcast_iter().map(|idx_arr| {
            let dtype = ca.dtype().to_arrow(true);
            if idx_arr.null_count() == 0 {
                gather_idx_array_unchecked(dtype, &targets, targets_have_nulls, idx_arr.values())
            } else if targets.len() == 1 {
                let target = targets.first().unwrap();
                if targets_have_nulls {
                    idx_arr
                        .iter()
                        .map(|i| target.get_unchecked(*i? as usize))
                        .collect_arr_trusted_with_dtype(dtype)
                } else {
                    idx_arr
                        .iter()
                        .map(|i| Some(target.value_unchecked(*i? as usize)))
                        .collect_arr_trusted_with_dtype(dtype)
                }
            } else {
                let cumlens = cumulative_lengths(&targets);
                if targets_have_nulls {
                    idx_arr
                        .iter()
                        .map(|i| target_get_unchecked(&targets, &cumlens, *i?))
                        .collect_arr_trusted_with_dtype(dtype)
                } else {
                    idx_arr
                        .iter()
                        .map(|i| Some(target_value_unchecked(&targets, &cumlens, *i?)))
                        .collect_arr_trusted_with_dtype(dtype)
                }
            }
        });

        let mut out = ChunkedArray::from_chunk_iter_like(ca, chunks);
        let sorted_flag = _update_gather_sorted_flag(ca.is_sorted_flag(), indices.is_sorted_flag());

        out.set_sorted_flag(sorted_flag);
        out
    }
}

impl ChunkTakeUnchecked<IdxCa> for BinaryChunked {
    /// Gather values from ChunkedArray by index.
    unsafe fn take_unchecked(&self, indices: &IdxCa) -> Self {
        let rechunked = self.rechunk();
        let indices = indices.rechunk();
        let indices_arr = indices.downcast_iter().next().unwrap();
        let chunks = rechunked
            .chunks()
            .iter()
            .map(|arr| take_unchecked(arr.as_ref(), indices_arr))
            .collect::<Vec<_>>();

        let mut out = ChunkedArray::from_chunks(self.name(), chunks);

        let sorted_flag =
            _update_gather_sorted_flag(self.is_sorted_flag(), indices.is_sorted_flag());
        out.set_sorted_flag(sorted_flag);
        out
    }
}

impl ChunkTakeUnchecked<IdxCa> for StringChunked {
    unsafe fn take_unchecked(&self, indices: &IdxCa) -> Self {
        self.as_binary().take_unchecked(indices).to_string()
    }
}

impl IdxCa {
    pub fn with_nullable_idx<T, F: FnOnce(&IdxCa) -> T>(idx: &[NullableIdxSize], f: F) -> T {
        let validity: Bitmap = idx.iter().map(|idx| !idx.is_null_idx()).collect_trusted();
        let idx = bytemuck::cast_slice::<_, IdxSize>(idx);
        let arr = unsafe { arrow::ffi::mmap::slice(idx) };
        let arr = arr.with_validity_typed(Some(validity));
        let ca = IdxCa::with_chunk("", arr);

        f(&ca)
    }
}